Rebecca A Mosher

Rebecca A Mosher

Associate Professor, Plant Sciences
Associate Director, School of Plant Sciences
Associate Professor, Applied BioSciences - GIDP
Associate Professor, Genetics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-4185

Work Summary

Dr. Mosher studies methylation of DNA in plants and how these epigenetic marks are transmitted from parent to offspring.

Research Interest

Rebecca Mosher, PhD, studies how epigenetic information is passed from parent to offspring. Epigenetic information refers to signals laid on top of DNA sequence that affect how and when genes are turned on. Examples of epigenetic signals include chemical modifications of DNA, packaging of DNA around proteins, or the position of DNA in the nucleus. Beginning with Mendel’s observations of pea plants, we have developed a robust understanding of how genetic information in the form of DNA is passed from parent to offspring, but we are only beginning to comprehend how and when epigenetic information is passed from generation to generation. Some epigenetic marks are erased and re-established during reproduction, while others are inherited for many generations. Using plants as models, the Mosher lab studies how tiny RNA molecules place and erase epigenetic marks during reproduction and how the epigenetic marks from the maternal and paternal genomes interact after fertilization.

Publications

Grover, J. W., Bomhoff, M., Davey, S., Gregory, B. D., Mosher, R. A., & Lyons, E. (2017). CoGe LoadExp+: A web-based suite that integrates next-generation sequencing data analysis workflows and visualization. Plant Direct, 1(2).
BIO5 Collaborators
Eric H Lyons, Rebecca A Mosher
Mosher, R. A., & Baulcombe, D. C. (2008). Bacterial pathogens encode suppressors of RNA-mediated silencing.. Genome biology, 9(10), 237-.

PMID: 18947381;PMCID: PMC2760867;Abstract:

Plant pathogenic bacteria encounter host defenses mediated by a variety of small RNAs. Bacterial suppressors of silencing that inhibit multiple steps of plant microRNA biogenesis and function have recently been identified.

Huang, Y., Kendall, T., & Mosher, R. A. (2013). Pol IV-Dependent siRNA Production is Reduced in Brassica rapa. Biology, 2(4), 1210-1223.
Mosher, R. A., Tan, E. H., Shin, J., Fischer, R. L., Pikaard, C. S., & Baulcombe, D. C. (2011). An atypical epigenetic mechanism affects uniparental expression of Pol IV-dependent sirnas. PLoS ONE, 6(10).

PMID: 22003406;PMCID: PMC3189211;Abstract:

Background: Small RNAs generated by RNA polymerase IV (Pol IV) are the most abundant class of small RNAs in flowering plants. In Arabidopsis thaliana Pol IV-dependent short interfering (p4-si)RNAs are imprinted and accumulate specifically from maternal chromosomes in the developing seeds. Imprinted expression of protein-coding genes is controlled by differential DNA or histone methylation placed in gametes. To identify epigenetic factors required for maternal-specific expression of p4-siRNAs we analyzed the effect of a series of candidate mutations, including those required for genomic imprinting of protein-coding genes, on uniparental expression of a representative p4-siRNA locus. Results: Paternal alleles of imprinted genes are marked by DNA or histone methylation placed by DNA METHYLTRANSFERASE 1 or the Polycomb Repressive Complex 2. Here we demonstrate that repression of paternal p4-siRNA expression at locus 08002 is not controlled by either of these mechanisms. Similarly, loss of several chromatin modification enzymes, including a histone acetyltransferase, a histone methyltransferase, and two nucleosome remodeling proteins, does not affect maternal expression of locus 08002. Maternal alleles of imprinted genes are hypomethylated by DEMETER DNA glycosylase, yet expression of p4-siRNAs occurs irrespective of demethylation by DEMETER or related glycosylases. Conclusions: Differential DNA methylation and other chromatin modifications associated with epigenetic silencing are not required for maternal-specific expression of p4-siRNAs at locus 08002. These data indicate that there is an as yet unknown epigenetic mechanism causing maternal-specific p4-siRNA expression that is distinct from the well-characterized mechanisms associated with DNA methylation or the Polycomb Repressive Complex 2. © 2011 Mosher et al.

Gohlke, J., & Mosher, R. A. (2015). Exploiting mobile RNA silencing for crop improvement. American Journal of Botany (review article), 102(9), 1399-400. doi:10.3732/ajb.1500173