Groundbreaking research published by BIO5 scientists and their collaborators

 

PubMed Articles

Search form

The phytotoxic fungal polyketides lasiodiplodin and resorcylide inhibit human blood coagulation factor XIIIa, mineralocorticoid receptors, and prostaglandin biosynthesis. These secondary metabolites belong to the 12-membered resorcylic acid lactone (RAL12) subclass of the benzenediol lactone (BDL) family. Identification of genomic loci for the biosynthesis of lasiodiplodin from Lasiodiplodia theobromae and resorcylide from Acremonium zeae revealed collaborating iterative polyketide synthase (iPKS) pairs whose efficient heterologous expression in Saccharomyces cerevisiae provided a convenient access to the RAL12 scaffolds desmethyl-lasiodiplodin and trans-resorcylide, respectively. Lasiodiplodin production was reconstituted in the heterologous host by co-expressing an O-methyltransferase also encoded in the lasiodiplodin cluster, while a glutathione-S-transferase was found not to be necessary for heterologous production. Clarification of the biogenesis of known resorcylide congeners in the heterologous host helped to disentangle the roles that biosynthetic irregularities and chemical interconversions play in generating chemical diversity. Observation of 14-membered RAL homologues during in vivo heterologous biosynthesis of RAL12 metabolites revealed "stuttering" by fungal iPKSs. The close global and domain-level sequence similarities of the orthologous BDL synthases across different structural subclasses implicate repeated horizontal gene transfers and/or cluster losses in different fungal lineages. The absence of straightforward correlations between enzyme sequences and product structural features (the size of the macrocycle, the conformation of the exocyclic methyl group, or the extent of reduction by the hrPKS) suggest that BDL structural variety is the result of a select few mutations in key active site cavity positions.

The 3-ketosteroid-delta 1-dehydrogenase (KS1DH) gene of Arthrobacter simplex IFO12069 cloned in Streptomyces lividans was overexpressed, resulting in production of the enzyme both extracellularly and intracellularly. The enzyme was purified by ammonium sulfate fractionation and chromatographies using DEAE-Toyopearl, Butyl-Toyopearl and Toyopearl HW55S from the supernatant of culture broth and cell-free extracts of S. lividans, and both preparations showed the same characteristics. The N-terminal amino acid sequence of both KS1DHs was M-D-W-A-E-E-Y-D, which coincided with the amino acid sequence deduced from the nucleotide sequence. Thus, the extracellular enzyme may derived from leakage of S. lividans cells during cultivation rather than secretion by processing of the signal sequence. The molecular weight of the enzyme was about 55,000, identical with the size deduced from the nucleotide sequence (M(r) 54,329). The optimum conditions for its activity were pH 10.0 and 40 degrees C. The enzyme catalyzed the conversion of several 3-keto-steroids, but those containing 11 alpha- or 11 beta-hydroxyl group were converted at low rates. The amino acid sequence of KS1DH from A. simplex is similar to those of KS1DH of Pseudomonas testosteroni and fumarate reductase from Shewanella putrefaciens.

The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of >50 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches.

Beauvericin, a cyclohexadepsipeptide ionophore from the entomopathogen Beauveria bassiana, shows antibiotic, antifungal, insecticidal, and cancer cell antiproliferative and antihaptotactic (cell motility inhibitory) activity in vitro. The bbBeas gene encoding the BbBEAS nonribosomal peptide synthetase was isolated from B. bassiana and confirmed to be responsible for beauvericin biosynthesis by targeted disruption. BbBEAS utilizes D-2-hydroxyisovalerate (D-Hiv) and L-phenylalanine (Phe) for the iterative synthesis of a predicted N-methyl-dipeptidol intermediate, and forms the cyclic trimeric ester beauvericin from this intermediate in an unusual recursive process. Heterologous expression of the bbBeas gene in Escherichia coli to produce the 3189 amino acid, 351.9 kDa BbBEAS enzyme provided a strain proficient in beauvericin biosynthesis. Comparative infection assays with a BbBEAS knockout B. bassiana strain against three insect hosts revealed that beauvericin plays a highly significant but not indispensable role in virulence.

Precursor-directed biosynthesis was used to produce analogues of the cyclic depsipeptide mycotoxin beauvericin (1) using the filamentous fungus Beauveria bassiana ATCC 7159. Feeding 30 analogues of D-2-hydroxyisovalerate and L-phenylalanine, the natural 2-hydroxycarboxylic acid and amino acid precursors of beauvericin, led to the biosynthesis of novel beauvericins. Six of these were isolated and characterized, and their cytotoxicity and directional cell migration (haptotaxis) inhibitory activity against the metastatic prostate cancer cell line PC-3M were evaluated. Replacement of one, two, or all three of the D-2-hydroxyisovalerate constituents in beauvericin (1) with 2-hydroxybutyrate moieties (beauvericins G(1-3), compounds 2-4) caused a parallel decline of cell migration inhibitory activity and cytotoxicity, suggesting a requirement for a branched side chain for both of these biological activities at the corresponding positions of beauvericins. Replacement of one, two, or all three N-methyl-L-phenylalanine residues of beauvericin with N-methyl-L-3-fluorophenylalanine moieties (beauvericins H(1-3), compounds 5-7) increased cytotoxicity without affecting antihaptotactic activity.

No abstract given.

Many microbes can be cultured as single-species communities. Often, these colonies are controlled and maintained via the secretion of metabolites. Such metabolites have been an invaluable resource for the discovery of therapeutics (e.g. penicillin, taxol, rapamycin, epothilone). In this article, written for a special issue on imaging mass spectrometry, we show that MALDI-imaging mass spectrometry can be adapted to observe, in a spatial manner, the metabolic exchange patterns of a diverse array of microbes, including thermophilic and mesophilic fungi, cyanobacteria, marine and terrestrial actinobacteria, and pathogenic bacteria. Dependent on media conditions, on average and based on manual analysis, we observed 11.3 molecules associated with each microbial IMS experiment, which was split nearly 50:50 between secreted and colony-associated molecules. The spatial distributions of these metabolic exchange factors are related to the biological and ecological functions of the organisms. This work establishes that MALDI-based IMS can be used as a general tool to study a diverse array of microbes. Furthermore the article forwards the notion of the IMS platform as a window to discover previously unreported molecules by monitoring the metabolic exchange patterns of organisms when grown on agar substrates.

4"-Oxo-avermectin is a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate from the natural product avermectin. Seventeen biocatalytically active Streptomyces strains with the ability to oxidize avermectin to 4"-oxo-avermectin in a regioselective manner have been discovered in a screen of 3,334 microorganisms. The enzymes responsible for this oxidation reaction in these biocatalytically active strains were found to be cytochrome P450 monooxygenases (CYPs) and were termed Ema1 to Ema17. The genes for Ema1 to Ema17 have been cloned, sequenced, and compared to reveal a new subfamily of CYPs. Ema1 to Ema16 have been overexpressed in Escherichia coli and purified as His-tagged recombinant proteins, and their basic enzyme kinetic parameters have been determined.

The gene for 3-ketosteroid delta 1-dehydrogenase (ksdD) of Arthrobacter simplex was expressed in Streptomyces lividans and the secreted enzyme was overproduced by using a multi-copy shuttle vector composed of pIJ702 and pUC19. Deletional analysis of the recombinant plasmid showed that the entire coding sequence of the ksdD gene was located within a 7-kb segment of the chromosomal DNA obtained from the enzyme-producing strain of A. simplex. When S. lividans carrying the recombinant plasmid was grown in an appropriate medium, the cells produced about 100-fold more 3-ketosteroid delta 1-dehydrogenase than the original strain. Although the percentage of enzyme secreted was changed during cultivation, a maximum 55% of the enzyme was secreted into the cultured medium of S. lividans, while A. simplex did not produce the enzyme extracellularly. Secretory overproduction of 3-ketosteroid delta 1-dehydrogenase in S. lividans was also identified by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and on native gel, and the enzyme reaction was confirmed by reverse-phase HPLC using 4-androstene-3,17-dione as a substrate.

No abstract given.

An open reading frame (rapP) encoding the putative pipecolate-incorporating enzyme (PIE) has been identified in the gene cluster for the biosynthesis of rapamycin in Streptomyces hygroscopicus. Conserved amino acid sequence motifs for ATP binding, ATP hydrolysis, adenylate formation, and 4'-phosphopantetheine attachment were identified by sequence comparison with authentic peptide synthetases. Disruption of rapP by phage insertion abolished rapamycin production in S. hygroscopicus, and the production of the antibiotic was specifically restored upon loss of the inserted phage by a second recombination event. rapP was expressed in both Escherichia coli and Streptomyces coelicolor, and recombinant PIE was purified to homogeneity from both hosts. Although low-level incorporation of [14C]beta-alanine into recombinant PIE isolated from E. coli was detected, formation of the covalent acylenzyme intermediate could only be shown with the PIE from S. coelicolor, suggesting that while the recombinant PIE from S. coelicolor was phosphopantetheinylated, only a minor proportion of the recombinant enzyme from E. coli was post-translationally modified.

Biomimetic-type reactions of the tricyclic pyridone alkaloid, (-)-fusoxypyridone [(-)-4,6'-anhydrooxysporidinone] (1), recently encountered in an endophytic strain of Fusarium oxysporum, and (-)-oxysporidinone (2) afforded (-)-sambutoxin (3) and an analogue of 1, identified as (-)-1'(6')-dehydro-4,6'-anhydrooxysporidinone (4), thus confirming the structure previously proposed for 1 and suggesting that 1-3 bear the same relative stereochemistry. Oxidation of 4 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) yielded a hitherto unknown sambutoxin analogue, (-)-4,2'-anhydrosambutoxin (5).

The three giant multifunctional polypeptides of the rapamycin (Rp)-producing polyketide synthase (RAPS1, RAPS2 and RAPS3) have recently been shown to contain 14 separate sets, or modules, of enzyme activities, each module catalysing a specific round of polyketide chain extension. Detailed sequence comparison between these protein modules has allowed further characterisation of aa that may be important in catalysis or specificity. The acyl-carrier protein (ACP), beta-ketoacyl-ACP synthase (KS) and acyltransferase (AT) domains (the core domains) have an extremely high degree of mutual sequence homology. The KS domains in particular are almost perfect repeats over their entire length. Module 14 shows the least homology and is unique in possessing only core domains. The enoyl reductase (ER), beta-ketoacyl-ACP reductase (KR) and dehydratase (DH) domains are present even in certain modules where they are not apparently required. Four DH domains can be recognised as inactive by characteristic deletions in active site sequences, but for two others, and for KR and ER in module 3, the sequence is not distinguishable from that of active counterparts in other modules. The N terminus of RAPS1 contains a novel coenzyme A ligase (CL) domain that activates and attaches the shikimate-derived starter unit, and an ER activity that may modify the starter unit after attachment. The sequence comparison has revealed the surprisingly high sequence similarity between inter-domain 'linker' regions, and also a potential amphipathic helix at the N terminus of each multienzyme subunit which may promote dimerisation into active species.

A genomic DNA region of over 80 kb that contains the complete biosynthetic gene cluster for the synthesis of the antifungal polyketide metabolite soraphen A was cloned from Sorangium cellulosum So ce26. The nucleotide sequence of the soraphen A gene region, including 67,523 bp was determined. Examination of this sequence led to the identification of two adjacent type I polyketide synthase (PKS) genes that encode the soraphen synthase. One of the soraphen A PKS genes includes three biosynthetic modules and the second contains five additional modules for a total of eight. The predicted substrate specificities of the acyltransferase (AT) domains, as well as the reductive loop domains identified within each module, are consistent with expectations from the structure of soraphen A. Genes were identified in the regions flanking the two soraphen synthase genes that are proposed to have roles in the biosynthesis of soraphen A. Downstream of the soraphen PKS genes is an O-methyltransferase (OMT) gene. Upstream of the soraphen PKS genes there is a gene encoding a reductase and a group of genes that are postulated to have roles in the synthesis of methoxymalonyl-acyl carrier protein (ACP). This unusual extender unit is proposed to be incorporated in two positions of the soraphen polyketide chain. One of the genes in this group contains distinct domains for an AT, an ACP, and an OMT.

The antifungal polyketide soraphen A is produced by the myxobacterium Sorangium cellulosum So ce26. The slow growth, swarming motility and general intransigence of the strain for genetic manipulations make industrial strain development, large-scale fermentation and combinatorial biosynthetic manipulation of the soraphen producer very challenging. To provide a better host for soraphen A production and molecular engineering, the biosynthetic gene cluster for this secondary metabolite was integrated into the chromosome of Streptomyces lividans ZX7. The upstream border of the gene cluster in Sor. cellulosum was defined by disrupting sorC, which is proposed to take part in the biosynthesis of methoxymalonyl-coenzyme A, to yield a Sor. cellulosum strain with abolished soraphen A production. Insertional inactivation of orf2 further upstream of sorC had no effect on soraphen A production. The genes sorR, C, D, F and E thus implicated in soraphen biosynthesis were then introduced into an engineered Str. lividans strain that carried the polyketide synthase genes sorA and sorB, and the methyltransferase gene sorM integrated into its chromosome. A benzoate-coenzyme A ligase from Rhodopseudomonas palustris was also included in some constructs. Fermentations with the engineered Str. lividans strains in the presence of benzoate and/or cinnamate yielded soraphen A. Further feeding experiments were used to delineate the biosynthesis of the benzoyl-coenzyme A starter unit of soraphen A in the heterologous host.

Fungal polyketides with the resorcylic acid lactone (RAL) scaffold are of interest for growth stimulation, the treatment of cancer, and neurodegenerative diseases. The RAL radicicol is a nanomolar inhibitor of the chaperone Hsp90, whose repression leads to a combinatorial blockade of cancer-causing pathways. Clustered genes for radicicol biosynthesis were identified and functionally characterized from the endophytic fungus Chaetomium chiversii, and compared to recently described RAL biosynthetic gene clusters. Radicicol production is abolished upon targeted inactivation of a putative cluster-specific regulator, or either of the two polyketide synthases that are predicted to collectively synthesize the radicicol polyketide core. Genomic evidence supports the existence of flavin-dependent halogenases in fungi: inactivation of such a putative halogenase from the C. chiversii radicicol locus yields dechloro-radicicol (monocillin I). Inactivation of a cytochrome P450 epoxidase furnishes pochonin D, a deepoxy-dihydro radicicol analog.

Analysis of the gene cluster from Streptomyces hygroscopicus that governs the biosynthesis of the polyketide immuno-suppressant rapamycin (Rp) has revealed that it contains three exceptionally large open reading frames (ORFs) encoding the modular polyketide synthase (PKS). Between two of these lies a fourth gene (rapP) encoding a pipecolate-incorporating enzyme that probably also catalyzes closure of the macrolide ring. On either side of these very large genes are ranged a total of 22 further ORFs before the limits of the cluster are reached, as judged by the identification of genes clearly encoding unrelated activities. Several of these ORFs appear to encode enzymes that would be required for Rp biosynthesis. These include two cytochrome P-450 monooxygenases (P450s), designated RapJ and RapN, an associated ferredoxin (Fd) RapO, and three potential SAM-dependent O-methyltransferases (MTases), RapI, RapM and RapQ. All of these are likely to be involved in 'late' modification of the macrocycle. The cluster also contains a novel gene (rapL) whose product is proposed to catalyze the formation of the Rp precursor, L-pipecolate, through the cyclodeamination of L-lysine. Adjacent genes have putative roles in Rp regulation and export. The codon usage of the PKS biosynthetic genes is markedly different from that of the flanking genes of the cluster.

A new metabolite of cholesterol was found in reaction mixtures containing cholesterol or 4-cholesten-3-one as a substrate and extra- or intracellular protein extracts from recombinant Streptomyces lividans and Escherichia coli strains carrying cloned DNA fragments of Streptomyces sp. SA-COO, the producer of Streptomyces cholesterol oxidase. The new metabolite was identified as 4-cholesten-6-ol-3-one based on comparisons of its high-performance liquid chromatography, gas chromatography/mass spectrometry, infrared and proton-nuclear magnetic resonance spectra with those of an authentic standard. Genetic analyses showed that the enzyme responsible for the production of 4-cholesten-6-ol-3-one is cholesterol oxidase encoded by the choA gene. Commercially purified cholesterol oxidase (EC 1.1.3.6.) of a Streptomyces sp., as well as of Brevibacterium sterolicum and a Pseudomonas sp., and a highly purified recombinant Streptomyces cholesterol oxidase were also able to catalyse the 6-hydroxylation reaction. Hydrogen peroxide accumulating in the reaction mixtures as a consequence of the 3 beta-hydroxysteroid oxidase activity of the enzyme was shown to have no role in the formation of the 6-hydroxylated derivative. We propose a possible scheme of a branched reaction pathway for the concurrent formation of 4-cholesten-3-one and 4-cholesten-6-ol-3-one by cholesterol oxidase, and the observed differences in the rate of formation of the 6-hydroxy-ketosteroid by the enzymes of different bacterial sources are also discussed.

The macrocyclic polyketides rapamycin and FK506 are potent immunosuppressants that prevent T-cell proliferation through specific binding to intracellular protein receptors (immunophilins). The cloning and specific alteration of the biosynthetic genes for these polyketides might allow the biosynthesis of clinically valuable analogues. We report here that three clustered polyketide synthase genes responsible for rapamycin biosynthesis in Streptomyces hygroscopicus together encode 14 homologous sets of enzyme activities (modules), each catalyzing a specific round of chain elongation. An adjacent gene encodes a pipecolate-incorporating enzyme, which completes the macrocycle. The total of 70 constituent active sites makes this the most complex multienzyme system identified so far. The DNA region sequenced (107.3 kbp) contains 24 additional open reading frames, some of which code for proteins governing other key steps in rapamycin biosynthesis.

No abstract given.

Pages