Nan-kuei Chen

Nan-kuei Chen

Associate Professor, Biomedical Engineering
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-0060

Research Interest

I am an MR physicist with extensive expertise in fast image acquisition methodology, pulse sequence design, and artifact correction for neuro MRI. In the past 18 years, I have developed novel approaches effectively addressing various types of challenging MRI artifacts, ranging from echo-planar imaging (EPI) geometric distortions, to susceptibility effect induced signal loss, to EPI Nyquist artifact, to motion-induced phase errors and aliasing artifacts in interleaved EPI based diffusion-weighted imaging. I am the original developer of multiplexed sensitivity encoded (MUSE) MRI, which can measure human brain connectivity in vivo at high spatial-resolution and accuracy, as shown in the publications listed below. More generally, my research involves the application of MR protocols in translational contexts. I have served as PI on NIH-funded R01, R21 and R03 grants, and have had extensive experience as a co-investigator on NIH-funded projects. The current focus of my research includes: * Development of high-throughput and motion-immune clinical MRI for imaging challenging patient populations * Imaging of neuronal connectivity networks for studies of neurological diseases * High-fidelity and multi-contrast MRI guided intervention * Characterization and correction of MRI artifacts * Signal processing and algorithm development * MRI studies of human development

Publications

Chang, H. C., Hui, E. S., Chiu, P. W., Liu, X., & Chen, N. K. (2017). Phase correction for three-dimensional (3D) diffusion-weighted interleaved EPI using 3D multiplexed sensitivity encoding and reconstruction (3D-MUSER). Magnetic resonance in medicine.

PURPOSE:Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI).THEORY AND METHODS:3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated.RESULTS:Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated.CONCLUSION:3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value.

Song, X., & Chen, N. (2014). A unified machine learning method for task-related and resting state fMRI data analysis. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2014, 6426-9.

Functional magnetic resonance imaging (fMRI) aims to localize task-related brain activation or resting-state functional connectivity. Most existing fMRI data analysis techniques rely on fixed thresholds to identify active voxels under a task condition or functionally connected voxels in the resting state. Due to fMRI non-stationarity, a fixed threshold cannot adapt to intra- and inter-subject variation and provide a reliable mapping of brain function. In this work, a machine learning method is proposed for a unified analysis of both task-related and resting state fMRI data. Specifically, the mapping of brain function in a task condition or resting state is formulated as an outlier detection process. Support vector machines are used to provide an initial mapping and refine mapping results. The method does not require a fixed threshold for the final decision, and can adapt to fMRI non-stationarity. The proposed method was evaluated using experimental data acquired from multiple human subjects. The results indicate that the proposed method can provide reliable mapping of brain function, and is applicable to various quantitative fMRI studies.

Lin, F., Huang, T., Chen, N., Wang, F., Stufflebeam, S. M., Belliveau, J. W., Wald, L. L., & Kwong, K. K. (2005). Functional MRI using regularized parallel imaging acquisition. Magnetic resonance in medicine, 54(2), 343-53.

Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions.

Chen, N., Oshio, K., Panych, L. P., Rybicki, F. J., & Mulkern, R. V. (2004). Spatially selective T2 and T2 * measurement with line-scan echo-planar spectroscopic imaging. Journal of magnetic resonance (San Diego, Calif. : 1997), 171(1), 90-6.

Line-scan echo planar spectroscopic imaging (LSEPSI) is applied to quickly measure the T2 and T2* relaxation time constants in pre-selected 2D or 3D regions. Results from brain imaging studies at 3T suggest that the proposed method may prove valuable for both basic research (e.g., quantifying the changes of T2/T2* values in functional MRI with blood oxygenation level-dependent contrast) and clinical studies (e.g., measuring the T2' shortening due to iron deposition). The proposed spatially selective T2 and T2* mapping technique is especially well suited for studies, where T2/T2* quantification needs to be performed dynamically in a pre-selected 2D or 3D region.

Yang, Y., Huang, T., Wang, F., Chuang, T., & Chen, N. (2013). Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation. Journal of neuroimaging : official journal of the American Society of Neuroimaging, 23(2), 202-6.

The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task.