Nicholas A Delamere

Nicholas A Delamere

Department Head, Physiology
Professor, Physiology
Professor, Ophthalmology
Member of the Graduate Faculty
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6425

Research Interest

Nicholas Delamere, Ph.D., studies how ocular pressure (pressure in the eye) is controlled and the way cells transport fluid, and seeks to find methods to regulate the mechanisms involved. His goal is to develop drugs that reduce intraocular pressure, thereby decreasing the severity of glaucoma and damage to the retina. His cataract research also offers a promising model for tissue preservation, which will delay the onset of cataracts. https://delamerelab.medicine.arizona.edu/

Publications

Delamere, N. A., & Paterson, C. A. (1982). Studies on calcium regulation in relation to sodium-potassium balance in the rabbit lens. Ophthalmic research, 14(3), 230-40.

Net changes in the levels of lens calcium, magnesium, sodium, potassium, and water content were determined following exposure in vitro to iodoacetate, ouabain, lanthanum, cyanide, quercetin and cold temperature. The lens calcium content rose following inhibition of lens metabolism but did not change following specific inhibition of the sodium pump. The data revealed that regulation of the lens calcium balance is largely independent of lens sodium and potassium content. A greater increase in lens sodium content upon iodoacetate treatment vs. ouabain treatment is discussed in relation to the elevation of lens calcium.

Foxx-Lupo, W. T., Wheatley, C. M., Baker, S. E., Cassuto, N. A., Delamere, N. A., & Snyder, E. M. (2011). Genetic variation of the alpha subunit of the epithelial Na+ channel influences exhaled Na+ in healthy humans. Respiratory physiology & neurobiology, 179(2-3), 205-11.

Epithelial Na(+) channels (ENaC) are located in alveolar cells and are important in β(2)-adrenergic receptor-mediated lung fluid clearance through the removal of Na(+) from the alveolar airspace. Previous work has demonstrated that genetic variation of the alpha subunit of ENaC at amino acid 663 is important in channel function: cells with the genotype resulting in alanine at amino acid 663 (A663) demonstrate attenuated function when compared to genotypes with at least one allele encoding threonine (T663, AT/TT). We sought to determine the influence of genetic variation at position 663 of ENaC on exhaled Na(+) in healthy humans. Exhaled Na(+) was measured in 18 AA and 13 AT/TT subjects (age=27±8 years vs. 30±10 years; ht.=174±12 cm vs. 171±10 cm; wt.=68±12 kg vs. 73±14 kg; BMI=22±3 kg/m(2) vs. 25±4 kg/m(2), mean±SD, for AA and AT/TT, respectively). Measurements were made at baseline and at 30, 60 and 90 min following the administration of a nebulized β(2)-agonist (albuterol sulfate, 2.5 mg diluted in 3 ml normal saline). The AA group had a higher baseline level of exhaled Na(+) and a greater response to β(2)-agonist stimulation (baseline=3.1±1.8 mmol/l vs. 2.3±1.5 mmol/l; 30 min-post=2.1±0.7 mmol/l vs. 2.2±0.8 mmol/l; 60 min-post=2.0±0.5 mmol/l vs. 2.3±1.0 mmol/l; 90 min-post=1.8±0.8 mmol/l vs. 2.6±1.5 mmol/l, mean±SD, for AA and AT/TT, respectively, p0.05). The results are consistent with the notion that genetic variation of ENaC influences β(2)-adrenergic receptor stimulated Na(+) clearance in the lungs, as there was a significant reduction in exhaled Na(+) over time in the AA group.

Shahidullah, M., Mandal, A., Wei, G., Levin, L. R., Buck, J., & Delamere, N. A. (2014). Nonpigmented ciliary epithelial cells respond to acetazolamide by a soluble adenylyl cyclase mechanism. Investigative ophthalmology & visual science, 55(1), 187-97.

The nonpigmented ciliary epithelium (NPE) is rich in soluble adenylyl cyclase (sAC), a proposed cytoplasmic bicarbonate sensor. Here, we examine the contribution of sAC to an increase in cyclic AMP (cAMP) and changes in a key ion transporter, H(+)-ATPase, in NPE exposed to acetazolamide, a carbonic anhydrase inhibitor (CAI).

Dong, J., & Delamere, N. A. (1994). Protein kinase C inhibits Na(+)-K(+)-2Cl- cotransporter activity in cultured rabbit nonpigmented ciliary epithelium. The American journal of physiology, 267(6 Pt 1), C1553-60.

We examined the regulation of Na(+)-K(+)-2Cl- transporter activity by protein kinase C (PKC) in a cell line derived from rabbit nonpigmented ciliary epithelium. Na(+)-K(+)-2Cl- cotransporter activity was measured as the rate of bumetanide-sensitive potassium (86Rb) transport. Phorbol 12,13-dibutyrate (PBDu) was used to activate PKC. PBDu inhibited bumetanide-sensitive potassium (86Rb) uptake, with a half-maximal inhibitory concentration of approximately 0.1 microM. The inhibitory effect of PBDu on potassium uptake by the N(+)-K(+)-2Cl- cotransporter was abolished by PCK downregulation and diminished by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a PKC inhibitor. PBDu inhibited Na(+)-K(+)-2Cl- cotransporter-mediated inward potassium (86Rb) transport by approximately 26% in control cells and by 40% in cells pretreated with ouabain. PKC activation also reduced the rate of bumetanide-sensitive potassium (86Rb) efflux in ouabain-treated cells but not in control (no oubain) cells. PBDu caused little change of intracellular sodium, potassium, or chloride, suggesting that an alteration of cytoplasmic ion composition is not responsible for the observed PBDu-induced changes in the rate of either inward or outward potassium movement mediated by the Na(+)-K(+)-2Cl- cotransporter.

Okafor, M. C., Dean, W. L., & Delamere, N. A. (1999). Thrombin inhibits active sodium-potassium transport in porcine lens. Investigative ophthalmology & visual science, 40(9), 2033-8.

Although thrombin is best known for its role in blood coagulation, it has been reported to change the activity of ion motive ATPases in some tissues. In the present study, experiments were conducted to determine the influence of thrombin on active sodium-potassium transport in porcine lenses.