Bentley A Fane

Bentley A Fane

Professor, Plant Sciences
Professor, Applied BioSciences - GIDP
Professor, Genetics - GIDP
Professor, Immunobiology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6634

Work Summary

Upon infection, viruses must transport their genomes into cells and produce progeny, often under a strict time deadline. We study how the viral proteins interact with with each other and with host cell proteins to efficiently accomplish these processes.

Research Interest

Bentley A. Fane, PhD, is a Professor in the School of Plant Sciences, College of Agriculture and Life Sciences and holds a joint appointment in the Department of Immunobiology, Arizona College of Medicine. Dr. Fane has an international reputation for his research into virus structure, assembly and evolution. His research focuses on the viruses of the Microviridae, of which he is considered one of the leading experts. He has been instrumental in defining the biochemical and structural parameters that allow these viruses to replicate and produce progeny in as little as five minutes. The rapid lifecycle has facilitated in depth studies into how viruses evolved resistance mechanism to anti-viral proteins targeting particle assembly.He has published over 60 original research paper in leading scientific journals, including Nature, Molecular Cell, and Journal of Virology, in which his publications on the evolution of resistance mechanisms and kinetic traps have been selected by the journal editors as articles of “significant interest.” He is a frequent presenter at national and international meetings, and has been invited to State of the Art and plenary talks at give the American Society for Virology. He presently serves on the Editorial Boards of two leading virology journals: Virology and the Journal of Virology. At the University of Arizona, Dr. Fane has been actively involved in promoting undergraduate research has been honored with teaching awards on the department, college, and university levels. Keywords: Virus structure and assembly, Viral DNA translocation, Viral evolution

Publications

Everson, J. S., Garner, S. A., Lambden, P. R., Fane, B. A., & Clarke, I. N. (2003). Host Range of Chlamydiaphages φCPAR39 and Chp3. Journal of Bacteriology, 185(21), 6490-6492.

PMID: 14563888;PMCID: PMC219413;Abstract:

The host range of φCPAR39 is limited to four Chlamydophila species: C. abortus, C. caviae, C. pecorum, and C. pneumoniae. Chp3 (a newly discovered bacteriophage isolated from C. pecorum) shares three of these hosts (C. abortus, C. caviae, and C. pecorum) but can additionally infect Chlamydophila felis. The ability to support replication was directly correlated with the binding properties of the respective bacteriophages with their host species. Binding studies also show that φCPAR39 and Chp3 use different host receptors to infect the same host cells: cell binding is sensitive to proteinase K treatment, confirming that the chlamydiaphage receptors are proteinaceous in nature.

Clarke, I. N., Cutcliffe, L. T., Everson, J. S., Garner, S. A., Lambden, P. R., Pead, P. J., Pickett, M. A., Brentlinger, K. L., & Fane, B. A. (2004). Chlamydiaphage Chp2, a skeleton in the φX174 closet: Scaffolding protein and procapsid identification. Journal of Bacteriology, 186(22), 7571-7574.

PMID: 15516569;PMCID: PMC524887;Abstract:

Chlamydiaphage Chp2 is a member of the family Microviridae, of which bacteriophage φX174 is the type species. Although grouped in the same family, the relationship between the Microviridae coliphages and the Chp2-like viruses, which infect obligate intracellular parasitic bacteria, is quite distant, with major differences in structural protein content and scaffolding protein dependence. To investigate the morphogenesis of Chp2, large particles were isolated from infected Chlamydophila abortus by equilibrium and rate zonal sedimentation. A monoclonal antibody that recognizes only assembled viral coat proteins was used in these detection assays. Thus, the detected particles represent virions and/or postcapsid formation assembly intermediates. Two distinct particle types were detected, differing in both protein and DNA content. Filled particles lacked VP3, the putative internal scaffolding protein, whereas empty particles contained this protein. These results indicate that VP3 is a scaffolding protein and that the isolated VP3-containing particles most likely represent Chp2 procapsids.

Doore, S. M., & Fane, B. A. (2016). The microviridae: Diversity, assembly, and experimental evolution. Virology (an invited review article), 491, 45-55.

The Microviridae, comprised of ssDNA, icosahedral bacteriophages, are a model system for studying morphogenesis and the evolution of assembly. Historically limited to the φX174-like viruses, recent results demonstrate that this richly diverse family is broadly divided into two groups. The defining feature appears to be whether one or two scaffolding proteins are required for assembly. The single-scaffolding systems contain an internal scaffolding protein, similar to many dsDNA viruses, and have a more complex coat protein fold. The two-scaffolding protein systems (φX174-like) encode an internal and external species, as well as an additional structural protein: a spike on the icosahedral vertices. Here, we discuss recent in silico and in vivo evolutionary analyses conducted with chimeric viruses and/or chimeric proteins. The results suggest 1) how double scaffolding systems can evolve into single and triple scaffolding systems; and 2) how assembly is the critical factor governing adaptation and the maintenance of species boundaries.

Gordon, E. B., Knuff, C. J., & Fane, B. A. (2012). Conformational switch-defective X174 internal scaffolding proteins kinetically trap assembly intermediates before procapsid formation. Journal of Virology, 86(18).

Conformational switching is an overarching paradigm in which to describe scaffolding protein-mediated virus assembly. However, rapid morphogenesis with small assembly subunits hinders the isolation of early morphogenetic intermediates in most model systems. Consequently, conformational switches are often defined by comparing the structures of virions, procapsids and aberrantly assembled particles. In contrast, X174 morphogenesis proceeds through at least three preprocapsid intermediates, which can be biochemically isolated. This affords a detailed analysis of early morphogenesis and internal scaffolding protein function. Amino acid substitutions were generated for the six C-terminal, aromatic amino acids that mediate most coat-internal scaffolding protein contacts. The biochemical characterization of mutant assembly pathways revealed two classes of molecular defects, protein binding and conformational switching, a novel phenotype. The conformational switch mutations kinetically trapped assembly intermediates before procapsid formation. Although mutations trapped different particles, they shared common second-site suppressors located in the viral coat protein. This suggests a fluid assembly pathway, one in which the scaffolding protein induces a single, coat protein conformational switch and not a series of sequential reactions. In this model, an incomplete or improper switch would kinetically trap intermediates.

Fane, B., Chen, M., Uchiyama, A., & Fane, B. A. (2007). Eliminating the requirement of an essential gene product in an already very small virus: scaffolding protein B-free øX174, B-free. Journal of molecular biology, 373(2).

Unlike most viral assembly systems, two scaffolding proteins, B and D, mediate bacteriophage øX174 morphogenesis. The external scaffolding protein D is highly ordered in the atomic structure and proper function is very sensitive to mutation. In contrast, the internal scaffolding protein B is relatively unordered and extensive alterations do not eliminate function. Despite this genetic laxity, protein B is absolutely required for virus assembly. Thus, this system, with its complex arrangements of overlapping reading frames, can be regarded as an example of "irreducible complexity." To address the biochemical functions of a dual scaffolding protein system and the evolution of complexity, progressive and targeted genetic selections were employed to lessen and finally eliminate B protein-dependence. The biochemical and genetic bases of adaptation were characterized throughout the analysis that led to the sextuple mutant with a B-independent phenotype, as evaluated by plaque formation in wild-type cells. The primary adaptation appears to be the over-expression of a mutant external scaffolding protein. Progeny production was followed in lysis-resistant cells. The ability to produce infectious virions does not require all six mutations. However, the lag phase before progeny production is shortened as mutations accumulate. The results suggest that the primary function of the internal scaffolding protein may be to lower the critical concentration of the external scaffolding protein needed to nucleate procapsid formation. Moreover, they demonstrate a novel mechanism by which a stringently required gene product can be bypassed, even in a system encoding only eight strictly essential proteins.