David W Galbraith

David W Galbraith

Professor, Plant Science
Professor, Biomedical Engineering
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-9153

Work Summary

I examine the molecular functions of the different cells found in the tissues and organs of plants and animals and how they combine these functions to optimize the health and vigor of the organism.

Research Interest

David Galbraith obtained undergraduate and graduate degrees in Biochemistry from the University of Cambridge, and postdoctoral training as a NATO Fellow at Stanford University. His first academic appointment was at the University of Nebraska Lincoln, and he became Professor of Plant Sciences at the University of Arizona in 1989. His research has focused on the development of instrumentation and methods for the analysis of biological cells, organs, and systems. He is internationally recognized as a pioneer in the development and use of flow cytometry and sorting in plants, developing widely-used methods for the analysis of genome size and cell cycle status, and for the production of somatic hybrids. He also was among the first to develop methods for the analysis of gene expression within specific cell types, using markers based on Fluorescent Protein expression for flow sorting these cells, and microarray platforms for analysis of their transcriptional activities and protein complements. Current interests include applications of highly parallel platforms for transcript and protein profiling of minimal sample sizes, and for analysis of genetic and epigenetic mechanisms that regulate gene expression during normal development and in diseased states, specifically pancreatic cancer. He is also funded to study factors involved in the regulation of bud dormancy in Vitis vinifera, and has interests in biodiversity and improvement of third-world agriculture. He has published more than 180 scholarly research articles, holds several patents, was elected a Fellow of the American Association for Advancement of Science in 2002, and serves on the editorial board of Cytometry Part A. He is widely sought as a speaker, having presented over 360 seminars in academic, industrial and conference settings. He was elected Secretary of the International Society for Advancement of Cytometry in 2016. Keywords: Plant and Animal Cellular Engineering; Biological Instrumentation; Flow Cytometry and Sorting

Publications

Chytilova, E., Macas, J., Sliwinska, E., Rafelski, S. M., Lambert, G. M., & Galbraith, D. W. (2000). Nuclear dynamics in Arabidopsis thaliana. Molecular Biology of the Cell, 11(8), 2733-2741.

PMID: 10930466;PMCID: PMC14952;Abstract:

The nucleus is a definitive feature of eukaryotic cells, comprising twin bilamellar membranes, the inner and outer nuclear membranes, which separate the nucleoplasmic and cytoplasmic compartments. Nuclear pores, complex macromolecular assemblies that connect the two membranes, mediate communication between these compartments. To explore the morphology, topology, and dynamics of nuclei within living plant cells, we have developed a novel method of confocal laser scanning fluorescence microscopy under time-lapse conditions. This is used for the examination of the transgenic expression in Arabidopsis thaliana of a chimeric protein, comprising the GFP (Green-Fluorescent Protein of Aequorea victoria) translationally fused to an effective nuclear localization signal (NLS) and to β-glucuronidase (GUS) from E. coli. This large protein is targeted to the nucleus and accumulates exclusively within the nucleoplasm. This article provides online access to movies that illustrate the remarkable and unusual properties displayed by the nuclei, including polymorphic shape changes and rapid, long-distance, intracellular movement. Movement is mediated by actin but not by tubulin; it therefore appears distinct from mechanisms of nuclear positioning and migration that have been reported for eukaryotes. The GFP-based assay is simple and of general applicability. It will be interesting to establish whether the novel type of dynamic behavior reported here, for higher plants, is observed in other eukaryotic organisms.

Schmelz, E. A., Grebenok, R. J., Galbraith, D. W., & Bowers, W. S. (1999). Insect-induced synthesis of phytoecdysteroids in spinach, Spinacia oleracea. Journal of Chemical Ecology, 25(8), 1739-1757.

Abstract:

Spinach (Spinacia oleracea) foliage is known to synthesize and accumulate insect molting hormones, predominantly in the form of 20- hydroxyecdysone (20E). We previously demonstrated that root 20E accumulation is increased following root damage. We designed two further experiments to address root responses to both mechanical and insect damage. In plants grown hydroponically, removal of 35% or less of the root mass did not result in changes in root 20E levels. However, removal of 70% of the root mass stimulated 6.0- and 1.5-fold increases in the root and shoot 20E concentrations, respectively. The effects of insect damage on soil-grown plants were investigated by infesting plant roots with black vine weevil (BVW: Otiorhynchus sulcatus) larvae and allowing them to feed for seven days. Decreases in root mass occurred in young plants; however, no changes were detected in mature plants. In all cases, root herbivory resulted in at least a 3.0-fold increase in root 20E concentrations. Our previous experiments implicated jasmonic acid and the analog methyl jasmonate (MJ) in signaling the damage-induced accumulation of root 20E levels. We investigated the activity of other phytohormones and growth regulators (GRs) on the 20E accumulation patterns of young plants as a means of examining the significance of jasmonates in the induction response. Hydroponic additions of MJ (0.5 μM) and the synthetic auxin, 1-naphthaleneacetic acid (NAA; 0.5 μM), resulted in significant increases in root 20E levels. At the concentrations tested, indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA), and trans-zeatin (Z) had no effects on root 20E concentrations. However, both NAA (0.5-5.0 μM) and Z (5.0 μM) treatments caused increases in the root/shoot dry mass ratios, indicating shifts in resource allocation to the roots. Treatments involving ABA (5.0 μM) and Z (0.5-5.0 μM) caused significant increases in shoot 20E concentrations. No other hormone treatments altered shoot accumulation patterns. The mechanisms underlying the root 20E induction phenomena were investigated through the incorporation of [2-14C]mevalonic acid ([14C]MVA). Within one day, excised roots readily incorporated radioactivity into 20E from [14C]MVA. In intact plants, [14C]MVA absorbed by the roots was rapidly incorporated into root 20E pools following damage and MJ treatments. This implies that the wound-induced root 20E accumulation is the result of increased de novo 20E synthesis in the root.

Galbraith, D. W., & Edwards, J. (2010). Applications of microarrays for crop improvement: Here, there, and everywhere. BioScience, 60(5), 337-348.

Abstract:

Recent advances in technology and in the ability to acquire, store, and analyze complex biological data sets have provided an unprecedented understanding of the mechanisms regulating living organisms' development and responses to the environment. We are gaining the insights required for rational modification of these organisms toward specific purposes. Microarrays provide an early example of the productive integration of high-throughput technologies with biological inquiry. In this article we discuss the development of this popular platform and its application in crop science and agriculture. © 2010 by American Institute of Biological Sciences. All rights reserved.

Wenying, X. u., Bak, S., Decker, A., Paquette, S. M., Feyereisen, R., & Galbraith, D. W. (2001). Microarray-based analysis of gene expression in very large gene families: The cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene, 272(1-2), 61-74.

PMID: 11470511;Abstract:

Cytochrome P450 (P450s) are heme-thiolate protein products of a very large gene superfamily, present in all kingdoms and involved in a variety of metabolic reactions. P450s are classified according to the degree of amino acid sequence identity, with P450s of the same family defined as having >40% identity, and P450s of the same subfamily having >55% identity. Currently, 273 P450 genes distributed over 45 families have been identified in Arabidopsis, and its genome is estimated to contain as many as 286. Genome-wide DNA microarrays make it possible to broadly correlate P450 gene activity with alterations in physiological or developmental states. A potential problem with microarray research is that sequence similarity between and within these families of closely related genes may lead to cross-hybridization. We designed experiments to systematically evaluate the specificity of P450 microarrays, and showed that conditions could be optimized to provide a very high degree of hybridization specificity. Under these conditions, and employing a 20% intensity value of maximum hybridization intensity as a cut-off, labeled P450 genes exhibited essentially no cross-hybridization between families and within subfamilies. We also compared the gene transcription levels of microarray probes derived from EST clones and from genomic DNA sequences for which ESTs were not available, using cDNA produced from RNA from various Arabidopsis tissue as the target. Many of the P450 genes displayed tissue-specific expression, leading to hypotheses as to the function of individual genes and their regulation. We also observed that several of the genomic sequences reported high levels of expression, highlighting the limitations of expression analysis based on ESTs alone. © 2001 Elsevier Science B.V. All rights reserved.

Noizet, M., Harrabi, F., Vijayalakshmi, M., Galbraith, D., Thomas, D., & Thomasset, B. (2008). Targeted protein accumulation promoted by autoassembly and its recovery from plant cells. Biotechnology Journal, 3(3), 392-402.

PMID: 18264977;Abstract:

The expression of a fusion protein formed between the avian infectious bronchitis virus M protein and the bacterial enzyme β-glucuronidase (GUS) in plants promotes the formation of new organization of the endoplasmic reticulunn in tobacco plants. This unusual organization of the membranes, never present in nontransformed plants, has been explained by the oligomerization of the GUS domains of the IBVM-GUS fusion proteins. These specific organized membranes could have broad implications for biotechnology since their formation could be used as a mechanism for retaining and accumulating resident proteins in specific and discrete membrane compartments. In this study, we have shown that the unusual organization of native membranes due to overexpression of the IBVM-GUS fusion gene in tobacco transgenic plants and calli is present at higher levels in plant cell suspensions than in plant tissues. In these cell suspensions, IBVM-GUS protein was continuously synthesized and accumulated throughout the cell culture. An enrichment of the chimeric IBVM-GUS protein corresponding to a five-fold increase in the microsomal fractions was achieved and the GUS enzyme did not show any modification on enzyme kinetics. However, the GUS activity could be differentially distributed in the fractions eluted at different pH suggesting differences in the surface topography of histidine residues for this recombinant GUS. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.