Eugene Chang

Eugene Chang

Associate Professor, Otolaryngology
Vice Chair, Academic Affairs - Otolaryngology
Associate Professor, Clinical Translational Sciences
Associate Professor, Neurosurgery
Member of the Graduate Faculty
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6673

Research Interest

Dr. Chang’s research is divided into three areas.Cystic fibrosis (CF) research: Dr. Chang is investigating the role of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in the pathogenesis of chronic sinusitis. He published the first animal model of CF sinus disease, and has characterized novel therapies including gene therapy vectors and CFTR potentiators in improving CF sinus disease in both animals and humans.Sinus microbiome research: the “microbiome” is the microbial community that is present in the human body. The sinonasal cavities have traditionally been thought to be sterile cavities, but new research is beginning to elucidate the vast number of microbial communities that populate our sinus. With this knowledge, we are investigating how our current therapies can influence this microbial population and prevent sinus disease.Impact of the upper and lower airway: as otolaryngologists, our focus has been in the airway of the head and neck. Dr. Chang has been investigating how the upper airway can influence disease of the lower airway, and vice versa. This research can influence the understanding of common diseases of the lower airway, such as asthma and chronic obstructive pulmonary disease (COPD).Dr. Chang receives active funding research support from the NIH, and the Cystic Fibrosis Foundation.

Publications

Palejwala, S. K., Sharma, S., Le, C. H., Chang, E., Erman, A. B., & Lemole, G. M. (2017). Complex skull base reconstruction in Kadish D esthesioneuroblastoma: case report. J Neurol Surg Rep, 78(2): e86-92.
Chang, E. H., & Zabner, J. (2015). Precision Genomic Medicine in Cystic Fibrosis. Clinical and translational science, 8(5), 606-10.

The successful application of precision genomic medicine requires an understanding of how a person's genome can influence his or her disease phenotype and how medical therapies can provide personalized therapy to one's genotype. In this review, we highlight advances in precision genomic medicine in cystic fibrosis (CF), a classic autosomal recessive genetic disorder. We discuss genotype-phenotype correlations in CF, genetic and environmental modifiers of disease, and pharmacogenetic therapies that target specific genetic mutations thereby addressing the primary defect of cystic fibrosis.