Jennifer Kehlet Barton

Jennifer Kehlet Barton

Director, BIO5 Institute
Thomas R. Brown Distinguished Chair in Biomedical Engineering
Professor, Agricultural-Biosystems Engineering
Professor, Biomedical Engineering
Professor, Electrical and Computer Engineering
Professor, Medical Imaging
Professor, Optical Sciences
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-0314

Work Summary

I develop new optical imaging devices that can detect cancer at the earliest stage. Optics has the resolution and sensitivity to find these small, curable lesions, and we design the endoscope that provide access to organs inside the body. .

Research Interest

Jennifer Barton, Ph.D. is known for her development of miniature endoscopes that combine multiple optical imaging techniques, particularly optical coherence tomography and fluorescence spectroscopy. She evaluates the suitability of these endoscopic techniques for detecting early cancer development in patients and pre-clinical models. She has a particular interest in the early detection of ovarian cancer, the most deadly gynecological malignancy. Additionally, her research into light-tissue interaction and dynamic optical properties of blood laid the groundwork for a novel therapeutic laser to treat disorders of the skin’s blood vessels. She has published over 100 peer-reviewed journal papers in these research areas. She is currently Professor of Biomedical Engineering, Electrical and Computer Engineering, Optical Sciences, Agriculture-Biosystems Engineering, and Medical Imaging at the University of Arizona. She has served as department head of Biomedical Engineering, Associate Vice President for Research, and is currently Director of the BIO5 Institute, a collaborative research institute dedicated to solving complex biology-based problems affecting humanity. She is a fellow of SPIE – the International Optics Society, and a fellow of the American Institute for Medical and Biological Engineering. Keywords: bioimaging, biomedical optics, biomedical engineering, bioengineering, cancer, endoscopes

Publications

Kieu, K. Q., Klein, J., Evans, A., Barton, J. K., & Peyghambarian, N. (2011). Ultrahigh resolution all-reflective optical coherence tomography system with a compact fiber-based supercontinuum source. Journal of biomedical optics, 16(10), 106004.

We report the construction and characterization of an all-reflective optical coherence tomography (OCT) system using a newly developed compact fiber-based broadband supercontinuum source. The use of only reflective optical components has enabled us to avoid chromatic dispersion effects and to obtain ultrahigh resolution OCT images of biological samples. We achieved an axial resolution of 2 μm in air with 87 dB dynamic range at a center wavelength around 1300 nm.

Barton, J., Hariri, L. P., Liebmann, E. R., Marion, S. L., Hoyer, P. B., Davis, J. R., Brewer, M. A., & Barton, J. K. (2010). Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis. Cancer biology & therapy, 10(5).

Determining if an ovarian mass is benign or malignant is an ongoing clinical challenge. The development of reliable animal models provides means to evaluate new diagnostic tools to more accurately determine if an ovary has benign or malignant features. Although sex cord-stromal tumors (SCST) account for 0.1–0.5% of ovarian malignancies, they have similar appearances to more aggressive epithelial cancers and can serve as a prototype for developing better diagnostic methods for ovarian cancer. Optical coherence tomography (OCT) and laser-induced fluorescence (LIF) spectroscopy are non-destructive optical imaging modalities. OCT provides architectural cross-sectional images at near histological resolutions and LIF provides biochemical information. We utilize combined OCT-LIF to image ovaries in post-menopausal ovarian carcinogenesis rat models, evaluating normal cyclic, acyclic and neoplastic ovaries. Eighty-three female Fisher rats were exposed to combinations of control sesame oil, 4-vinyl cyclohexene diepoxide (VCD) to induce ovarian failure,and/or 7,12-dimethylbenz[a]anthracene (DMBA) to induce carcinogenesis. Three or five months post-treatment, 162 ovaries were harvested and imaged with OCT-LIF: 40 cyclic, 105 acyclic and 17 SCST. OCT identified various follicle stages,corpora lutea (CL), CL remnants, epithelial invaginations/inclusions and allowed for characterization of both cystic and solid SCST. Signal attenuation comparisons between CL and solid SCST revealed statistically significant increases in attenuation among CL. LIF characterized spectral differences in cyclic, acyclic and neoplastic ovaries attributed to collagen, NADH/FAD and hemoglobin absorption. We present combined OCT-LIF imaging in a rat ovarian carcinogenesis model, providing preliminary criteria for normal cyclic, acyclic and SCST ovaries which support the potential of OCT-LIF for ovarian imaging.

Tate, T. H., Baggett, B., Rice, P. F., Koevary, J. W., Orsinger, G. V., Nymeyer, A. C., Welge, W. A., Saboda, K., Roe, D. J., Hatch, K. D., Chambers, S. K., Utzinger, U., & Barton, J. K. (2016). Multispectral fluorescence imaging of human ovarian and fallopian tube tissue for early-stage cancer detection. Journal of biomedical optics, 21(5), 56005.
Barton, J., Tumlinson, A. R., Hariri, L. P., Utzinger, U., & Barton, J. K. (2004). Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. Applied optics, 43(1).

We have designed a multimodality system that combines optical coherence tomography (OCT) and laser-induced fluorescence (LIF) in a 2.0-mm-diameter endoscopic package. OCT provides approximately 18-microm resolution cross-sectional structural information over a 6-mm field. LIF spectra are collected sequentially at submillimeter resolution across the same field and provide histochemical information about the tissue. We present the use of a rod prism to reduce the asymmetry in the OCT beam caused by a cylindrical window. The endoscope has been applied to investigate mouse colon cancer in vivo.

Barton, J., Wall, R. A., & Barton, J. K. (2012). Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope. Journal of biomedical optics, 17(8).

A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-µm lateral and 2.3-µm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.