Judith Bronstein

Judith Bronstein

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
University Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-3534

Research Interest

Judith L. Bronstein is University Distinguished Professor of Ecology and Evolutionary Biology, with a joint appointment in the Department of Entomology. Dr. Bronstein’s large, active lab focuses on the ecology and evolution of interspecific interactions, particularly on the poorly-understood, mutually beneficial ones (mutualisms). Using a combination of field observations, experiments, and theory, they are examining how population processes, abiotic conditions, and the community context determine net effects of interactions for the fitness of each participant species. Specific conceptual areas of interest include: (i) conflicts of interest between mutualists and their consequences for the maintenance of beneficial outcomes; (ii) the causes and consequences of "cheating" within mutualism; (iii) context-dependent outcomes in both mutualisms and antagonisms; and (iv) anthropogenic threats to mutualisms. In addition, she is Editor-in-Chief of The American Naturalist, a leading international journal in ecology and evolution. An award-winning instructor, Dr. Bronstein teaches at both the undergraduate and graduate levels; she has also run a large training grant administered by BIO5 that places life sciences graduate students in public school classrooms around Tucson. She serves in leadership positions in the College of Science (including chairing the College of Science Promotion and Tenure Committee for 2013), at the University, and at the Arizona-Sonora Desert Museum, where she is a member of the Board of Trustees and Chair of the Science and Conservation Council.

Publications

Lanan, M. C., Dornhaus, A., & Bronstein, J. L. (2011). The function of polydomy: The ant Crematogaster torosa preferentially forms new nests near food sources and fortifies outstations. Behavioral Ecology and Sociobiology, 65(5), 959-968.
BIO5 Collaborators
Judith Bronstein, Anna R Dornhaus

Abstract:

Many ant species are polydomous, forming multiple spatially segregated nests that exchange workers and brood. However, why polydomy occurs is still uncertain. We investigated whether colonies of Crematogaster torosa form new polydomous nests to better exploit temporally stable food resources. Specifically, we tested the effect of food presence or absence and distance on the likelihood that colonies would form a new nest. Because this species also forms little-known structures that house only workers without brood (outstations), we also compared the function of this structure with true nests. Laboratory-reared colonies were connected to a new foraging arena containing potential nest sites with or without food for 4 months. When food was present, most colonies formed polydomous nests nearby and the remainder formed outstations. When food was absent, the behavior of colonies differed significantly, frequently forming outstations but never polydomous nests. Distance had no effect on the type of structure formed, but when food was present, a larger proportion of the workforce moved shorter distances. Workers often fortified the entrances to both structures and used them for storage of dried insect tissue ("jerky"). In an investigation of spatial fidelity, we found that workers on the between-nest trail were associated with the original nest, whereas workers collecting food were more likely to be associated with the new nest or outstation. C. torosa appears to have a flexible colony structure, forming both outstations and polydomous nests. Polydomous nests in this species were associated with foraging and were only formed near food resources. © 2010 Springer-Verlag.

Bronstein, J. L., Alarcón, R., & Geber, M. (2006). The evolution of plant-insect mutualisms. New Phytologist, 172(3), 412-428.

PMID: 17083673;Abstract:

Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms. © The Authors (2006).

Bronstein, J. L. (1991). The nonpollinating wasp fauna of Ficus pertusa: exploitation of a mutualism?. Oikos, 61(2), 175-186.

Abstract:

Reports on the three undescribed wasp species (Chalcidoidea: Torymidae: Sycophaginae) commonly associated with a neotropical fig, focusing on their dependence on the mutualism between F. pertusa and its pollinator Pegoscapus silvestrii, and their impact upon it. The species exploiting F. pertusa feed on nourishing tissue that they induce within fig ovaries that are unexploited by the pollinators, rather than on developing pollinators or seeds. Thus, in this case any costs to the mutualists should be indirect and probably small. F. pertusa's torymid species can only reproduce if females have oviposited within pollinated syconia, since trees abscise nearly all unpollinated ones early in development. Torymid oviposition was delayed relative to pollination, and in the one species investigated, females discriminated among syconia and chose to oviposit in pollinated ones. Offspring depend on the pollinators' male offspring to create an escape passage out of the mature syconium, and maturation times of all wasp species within the syconium are highly synchronized. -from Author

Bronstein, J., & Lanan, M. (2013). An ant's eye view of an ant-plant protection mutualism. Oecologia, 172, 779-790.
Anstatt, M. -., Bronstein, J. L., & Hossaert-McKey, M. (1996). Resource allocation: A conflict in the fig/fig wasp mutualism?. Journal of Evolutionary Biology, 9(4), 417-428.

Abstract:

Conflicts of interest are omnipresent between mutualist species. In the monoecious fig/pollinator wasp mutualism, each female flower produces either a seed or a pollinator offspring (which has fed on a single seed). Pollen from a syconium (i.e. fig, a closed urn-shaped inflorescence) is only dispersed by female pollinator offspring born in this syconium. Thus the fig tree is selected to produce both seed and pollinator offspring whereas for the pollinator there is no short term advantage in seed production. Using controlled pollination experiments (pollen injection, and foundress introduction), we show that 1) The relative proportion of seeds and pollinator offspring produced (i.e., the effective allocation between female and mule function) depends mainly on the number of foundresses that entered the syconium. 2) Many female flowers within every syconium mature neither a seed nor a wasp (from 25% to 33%). 3) All the female flowers within u syconium that are not vacant at maturity have the potential to produce a seed, and at least 80% of them can produce a pollinator. Several hypotheses concerning mechanisms that govern the partitioning between seed and wasp production are discussed, and their evolutionary consequences are considered.