Laurence Hurley

Laurence Hurley

Associate Director, BIO5 Institute
Professor, Medicinal Chemistry-Pharmaceutical Sciences
Professor, Medicinal Chemistry-Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-5622

Work Summary

Laurence Hurley's long-time research interest is in molecular targeting of DNA, first by covalent binders (CC-1065 and psorospermin), then as compounds that target protein–DNA complexes (pluramycins and Et 743), and most recently as four-stranded DNA structures (G-quadruplexes and i-motifs). He was the first to show that targeting G-quadruplexes could inhibit telomerase (Sun et al. [1997] J. Med. Chem., 40, 2113) and that targeting G-quadruplexes in promoter complexes results in inhibition of transcription (Siddiqui-Jain et al. [2002] Proc. Natl. Acad. Sci. U.S.A., 99, 11593).

Research Interest

Laurence Hurley, PhD, embraces an overall objective to design and develop novel antitumor agents that will extend the productive lives of patients who have cancer. His research program in medicinal chemistry depends upon a structure-based approach to drug design that is intertwined with a clinical oncology program in cancer therapeutics directed by Professor Daniel Von Hoff at TGen at the Mayo Clinic in Scottsdale. Dr. Hurley directs a research group that consists of a team of graduate and postdoctoral students with expertise in structural and synthetic chemistry working alongside students in biochemistry and molecular biology. NMR and in vivo evaluations of novel agents are carried out in collaboration with other research groups in the Arizona Cancer Center. At present, they have a number of different groups of compounds that target a variety of intracellular receptors. These receptors include: (1) transcriptional regulatory elements, (2) those involved in cell signaling pathways, and (3) protein-DNA complexes, including transcriptional factor-DNA complexes.In close collaboration with Dr. Gary Flynn in Medicinal Chemistry, he has an ongoing program to target a number of important kinases, including aurora kinases A and B, p38, and B-raf. These studies involve structure-based approaches as well as virtual screening. Molecular modeling and synthetic medicinal chemistry are important tools.The protein–DNA complexes involved in transcriptional activation of promoter complexes using secondary DNA structures are also targets for drug design.

Publications

Hurley, L. H. (1979). Pyrrolo[1,4]benzodiazepine antibiotics. Biosynthesis of the antitumor antibiotic sibiromycin by streptosporangium sibiricum. Biochemistry, 18(19), 4225-4229.

PMID: 582800;Abstract:

The biosynthesis of the antitumor antibiotic sibiromycin by Streptosporangium sibiricum requires the construction of four units: the amino sugar from glucose; the anthranilate ring from DL-tryptophan probably via kynurenine; the aromatic methyl group from methionine; the propylidene proline from L-tyrosine with the loss of two aromatic carbons and addition of a C-1 from methionine. Retention of tritium from DL-[5-3H]tryptophan in sibiromycin suggests an NIH shift during hydroxylation of an intermediate. © 1979 American Chemical Society.

Hurley, L. H., & Gairola, C. (1979). Pyrrolo (1,4) benzodiazepine antitumor antibiotics: Biosynthetic studies on the conversion of tryptophan to the anthranilic acid moieties of sibiromycin and tomaymycin. Antimicrobial Agents and Chemotherapy, 15(1), 42-45.

PMID: 581831;PMCID: PMC352597;Abstract:

Biosynthetic intermediates between tryptophan and the anthranilate mioeties of tomaymycin and sibiromycin have been suggested, based upon a combination of feeding experiments with either carbon-14-labeled substrates or competition experiments between radiolabeled tryptophan and unlabeled intermediates. In the case of sibiromycin and tomaymycin, substitution of the aromatic ring most likely takes place at the kynurenine stage. Feeding experiments with the antramycin culture were inconclusive, most likely because of the cell impermeability.

Reynolds, V. L., McGovren, J. P., & Hurley, L. H. (1986). The chemistry, mechanism of action and biological properties of CC-1065, a potent antitumor antibiotic. Journal of Antibiotics, 39(3), 319-334.
Hurley, L. H., Gairola, C., & Zmijewski Jr., M. J. (1975). Biosynthesis of the antiviral antibiotic 11-demethyltomaymycin by Streptomyces achromogenes. Journal of the Chemical Society, Chemical Communications, 120-121.

Abstract:

The building blocks for 11-demethyltomay-mycin have been established as trytophan, tyrosine and a one carbon unit via methionine.

V., P., Hahn, S., Beman, C., Biswanath, D. e., Brooks, T. A., Gokhale, V., & Hurley, L. H. (2012). Anticancer activity and cellular repression of c-MYC by the G-quadruplex-stabilizing 11-piperazinylquindoline is not dependent on direct targeting of the G-quadruplex in the c-MYC promoter. Journal of Medicinal Chemistry, 55(13), 6076-6086.

PMID: 22691117;PMCID: PMC3395776;Abstract:

This G-rich region of the c-MYC promoter has been shown to form a G-quadruplex structure that acts as a silencer element for c-MYC transcriptional control. In the present work, we have synthesized a series of 11-substituted quindoline analogues as c-MYC G-quadruplex-stabilizing compounds, and the cell-free and in vitro activity of these compounds were evaluated. Two lead compounds (4 and 12) demonstrated good cell-free profiles, and compound 4 (2-(4-(10H-indolo[3,2-b]quinolin-11-yl)piperazin-1-yl)-N,N-dimethylethanamine) significantly down-regulated c-MYC expression. However, despite the good cell-free activity and the effect of these compounds on c-MYC gene expression, we have demonstrated, using a cellular assay in a Burkitts lymphoma cell line (CA46-specific), that these effects were not mediated through targeting of the c-MYC G-quadruplex. Thus, caution should be used in assigning the effects of G-quadruplex-interactive compounds that lower c-MYC to direct targeting of these promoter elements unless this assay, or similar ones, demonstrates direct targeting of the G-quadruplex in cells. © 2012 American Chemical Society.