Laurence Hurley

Laurence Hurley

Associate Director, BIO5 Institute
Professor, Medicinal Chemistry-Pharmaceutical Sciences
Professor, Medicinal Chemistry-Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-5622

Work Summary

Laurence Hurley's long-time research interest is in molecular targeting of DNA, first by covalent binders (CC-1065 and psorospermin), then as compounds that target protein–DNA complexes (pluramycins and Et 743), and most recently as four-stranded DNA structures (G-quadruplexes and i-motifs). He was the first to show that targeting G-quadruplexes could inhibit telomerase (Sun et al. [1997] J. Med. Chem., 40, 2113) and that targeting G-quadruplexes in promoter complexes results in inhibition of transcription (Siddiqui-Jain et al. [2002] Proc. Natl. Acad. Sci. U.S.A., 99, 11593).

Research Interest

Laurence Hurley, PhD, embraces an overall objective to design and develop novel antitumor agents that will extend the productive lives of patients who have cancer. His research program in medicinal chemistry depends upon a structure-based approach to drug design that is intertwined with a clinical oncology program in cancer therapeutics directed by Professor Daniel Von Hoff at TGen at the Mayo Clinic in Scottsdale. Dr. Hurley directs a research group that consists of a team of graduate and postdoctoral students with expertise in structural and synthetic chemistry working alongside students in biochemistry and molecular biology. NMR and in vivo evaluations of novel agents are carried out in collaboration with other research groups in the Arizona Cancer Center. At present, they have a number of different groups of compounds that target a variety of intracellular receptors. These receptors include: (1) transcriptional regulatory elements, (2) those involved in cell signaling pathways, and (3) protein-DNA complexes, including transcriptional factor-DNA complexes.In close collaboration with Dr. Gary Flynn in Medicinal Chemistry, he has an ongoing program to target a number of important kinases, including aurora kinases A and B, p38, and B-raf. These studies involve structure-based approaches as well as virtual screening. Molecular modeling and synthetic medicinal chemistry are important tools.The protein–DNA complexes involved in transcriptional activation of promoter complexes using secondary DNA structures are also targets for drug design.

Publications

Freyer, M. W., Buscaglia, R., Kaplan, K., Cashman, D., Hurley, L. H., & Lewis, E. A. (2007). Biophysical studies of the c-MYC NHE III1 promoter: Model quadruplex interactions with a cationic porphyrin. Biophysical Journal, 92(6), 2007-2015.

PMID: 17172304;PMCID: PMC1861781;Abstract:

Regulation of the structural equilibrium of G-quadruplex-forming sequences located in the promoter regions of oncogenes by the binding of small molecules has shown potential as a new avenue for cancer chemotherapy. In this study, microcalorimetry (isothermal titration calorimetry and differential scanning calorimetry), electronic spectroscopy (ultraviolet-visible and circular dichroism), and molecular modeling were used to probe the complex interactions between a cationic porphryin mesotetra (N-methyl-4-pyridyl) porphine (TMPyP4) and the c-MYC PU 27-mer quadruplex. The stoichiometry at saturation is 4:1 mol of TMPyP4/c-MYC PU 27-mer G-quadruplex as determined by isothermal titration calorimetry, circular dichroism, and ultraviolet-visible spectroscopy. The four independent TMPyP4 binding sites fall into one of two modes. The two binding modes are different with respect to affinity, enthalpy change, and entropy change for formation of the 1:1 and 2:1, or 3:1 and 4:1 complexes. Binding of TMPyP4, at or near physiologic ionic strength ([K+] = 0.13 M), is described by a "two-independent-sites model." The two highest-affinity sites exhibit a K1 of 1.6 x 107 M-1 and the two lowest-affinity sites exhibit a K2 of 4.2 x 105 M -1. Dissection of the free-energy change into the enthalpy- and entropy-change contributions for the two modes is consistent with both "intercalative" and "exterior" binding mechanisms. An additional complexity is that there may be as many as six possible conformational quadruplex isomers based on the sequence. Differential scanning calorimetry experiments demonstrated two distinct melting events (Tm1 = 74.7°C and Tm2 = 91.2°C) resulting from a mixture of at least two conformers for the c-MYC PU 27-mer in solution. © 2007 by the Biophysical Society.

Lee, S., & Hurley, L. H. (1997). DNA conformation selective intercalation of pluramycins into TBP-TATA box complex. FASEB Journal, 11(9), A1324.

Abstract:

TDP (TATA binding protein), the primary transcription factor tliat recruits subsequent transcription machinery, binds io the TATA box through the extensive minor groove contacts and locally bends ihe DNA. This protein-induced distortion transiently creates an unv-ound site on the downstream side of the TATA box. and is favorably seized by piuramyrins, a group of novel threading intercalating arititumor antibiotics. To understand the detail of the dynamics of Ihe TATA box upon TBP binding, we have investigated the TUP-1 ATA box complexes using D Nase I arid piuramyrins. D Nase I foot print ing ex periinpnts revealed overdigested pattern rather than protection on both the if half A tract of the TATA box and the downstream flanking sequences at low i oncen t rations of protein, implying the unusual déformai ion of t he minor groove. A downstream ba.se-pair step in the protein-DNA complex showed the enhanced modification by a.11 pluramycins. However, pluramycins that have distinct, sugar substituants alkylated different guanines in the same base-pair step (CG : GC), indicating t hat the sugar substituents modulated orientations of ihe drugs. Taken together, it is proposed that the asymmetric recognition of the TBP-TATA complex originates trom the preferred distortion on the 3′ half A tract of the TATA box and that the propagated distortion results in the un winding of the specific downstream base-pair step. Those results also suggest the potential of pluramycins as molecular probes that detect uniquely deformed DNA duplexes through the specifii positioning of sugar substituents.

Henderson, D., & Hurley, L. H. (1995). Molecular struggle for transcriptional control. Nature Medicine, 1(6), 525-527.
Hongtao, Y. u., Hurley, L. H., & Kerwin, S. M. (1996). Evidence for the formation of 2:2 drug-Mg2+ dimers in solution and for the formation of dimeric drug complexes on DNA from the DNA-accelerated photochemical reaction of antineoplastic quinobenzoxazines. Journal of the American Chemical Society, 118(30), 7040-7048.

Abstract:

The quinobenzoxazines are a group of topoisomerase II catalytic inhibitors that have demonstrated promising anticancer activity in mice. They have been proposed to form an unprecedented 2:2 drug-Mg2+ self-assembly complex on DNA. We have exploited the photochemical decomposition of the quinobenzoxazines to gain further support and insights into the nature of 2:2 quinobenzoxazine-Mg2+ dimers and the 2:2 drug-Mg2+ complex on duplex DNA. The quinobenzoxazine A-62176 undergoes photodecomposition to highly fluorescent products. Methyl viologen (MV2+) accelerates this photoreaction almost 500-fold. The formation of 2:2 drug-Mg2+ dimers in solution is deduced from the Mg2+-dependent difference in the MV2+-facilitated photoreaction rates of racemic and scalemic A-62176. However, both racemic and scalemic A-62176 have identical MV2+-facilitated photoreaction rates in the presence of Mg2+ and the achiral fluoroquinolone norfloxacin, due to heterochemical norfloxacin/A-62176 dimer complex formation. DNA also accelerates the photochemical decomposition of A-62176 up to 80-fold. This DNA-acceleration requires Mg2+, duplex DNA, molecular oxygen, and intercalation of the drug into the DNA duplex. In the proposed model for drug-DNA complexation, only one drug molecule of each 2:2 drug-Mg2+ dimer intercalates into the DNA duplex, the other molecule binds externally to the DNA. Norfloxacin, which can only play the external binding role, was able to modulate the photochemical reaction of the quinobenzoxazines on DNA. Furthermore, it appears that the precise positioning of the intercalated molecule, which is modulated by the structure and stereochemistry of the externally bound molecule, plays an important role in determining the rate of photoreaction on DNA. The implications of the observed photochemical reaction of the quinobenzoxazines are described for human phototoxicity, photodynamic therapy, mechanism of action studies, and improved drug design for both topoisomerase and gyrase inhibitors.

Lee, C., Sun, D., Kizu, R., & Hurley, L. H. (1991). Determination of the structural features of (+)-CC-1065 that are responsible for bending and winding of DNA. Chemical Research in Toxicology, 4(2), 203-213.

PMID: 1782349;Abstract:

Analysis of the anomalous migration in electrophoretic mobilities of (+)-CC-1065-modified oligomers following ligation reveals that (+)-CC-1065 induces DNA bending and winding of the helix. (+)-CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis. This drug selectively bonds covalently to N3 of adenine and lies in the minor groove of DNA, reacting in a highly sequence-selective manner. Structurally, (+)-CC-1065 consists of three subunits: two identical pyrroloindole units (subunits B and C) and a third subunit containing the DNA-reactive cyclopropane ring (subunit A). While the bonding reaction is the main determinant of DNA sequence selectivity of (+)-CC-1065, binding interactions between the inside edge substituents of the B and C subunits and the floor of the minor groove of DNA can modulate or fine tune this sequence selectivity [Hurley, L. H., Lee, C.-S., McGovren, J. P., Mitchell, M. A., Warpehoski, M. A., Kelly, R. C., & Aristoff, P. A. (1988) Biochemistry 27, 3886-3892]. The A subunit of (+)-CC-1065 is responsible for the bending of DNA, and close van der Waals contacts between the inside edge of (+)-CC-1065 and the floor of the minor groove of DNA cause winding equivalent to about 1 base pair per alkylation site and stiffening of DNA. The magnitude of DNA bending induced by (+)-CC-1065 and related compounds is about 14-19°, which is equivalent to that produced by an adenine-thymine tract of about 5-6 base pairs in length. Experiments using oligomers containing both an adenine tract and a unique (+)-CC-1065 bonding site approximately one helix turn apart demonstrate that the directionality of drug-induced bending is in toward the minor groove and the locus of bending is about 2-3 base pairs to the 5′-side of the covalently modified adenine. A circularization efficiency assay shows that the optimum size of circles produced by (+)-CC-1065 and related drugs is between 168 and 180 base pairs. These results are discussed in relation to the molecular basis of the DNA sequence selectivity of (+)-CC-1065, and the (+)-CC-1065-induced DNA bending is compared with the intrinsic bending associated with adenine tracts. Since (+)-CC-1065 induces effects on local DNA structure that appear similar to those produced naturally by adenine tracts and certain DNA binding proteins, the relevance of this phenomenon to biological effects of (+)-CC-1065 and related drugs is considered. © 1991 American Chemical Society.