Roger L Miesfeld

Roger L Miesfeld

Distinguished Professor, Chemistry and Biochemistry
Professor, Chemistry and Biochemistry
Professor, Molecular and Cellular Biology
Professor, Entomology / Insect Science - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-2343

Research Interest

Roger L. Miesfeld, Ph.D., Professor and Co-Chair, Dept. of Chemistry & Biochemistry, College of Science, University of Arizona. Mosquitoes are human disease vectors that transmit pathogens through blood feeding. One of these disease vectors is the Aedes aegypti mosquito, which have rapidly expanded their habitat and are contributing annually to 500,000 cases of Dengue hemorrhagic fever. On an even greater scale, Anopheline mosquitoes account for 250 million cases of malaria/yr, with up to 1 million deaths annually. The most common adult insecticides used for mosquito control are pyrethroids, which inhibit evolutionarily conserved sodium channels in the mosquito nervous system. Although these compounds have proven to be effective, mosquito resistance is an increasing problem and there is a pressing need to develop the next generation of safe and effective agents. Since blood meal feeding creates a unique metabolic challenge as a result of the extremely high protein and iron content of blood, it is possible that interfering with blood meal metabolism could provide a novel control strategy for mosquito born diseases. Our long term goal is to identify small molecule inhibitors that block blood meal metabolism in vector mosquitoes, resulting in feeding-induced death of the adult female, or a significant reduction in egg viability, as a strategy to control vector mosquito populations in areas of high disease transmission.

Publications

Miesfeld, R., & Arnheim, N. (1984). Species-specific rDNA transcription is due to promoter-specific binding factors. Molecular and Cellular Biology, 4(2), 221-227.

PMID: 6700588;PMCID: PMC368684;

Miesfeld, R., Isoe, J., Collins, J., Badgandi, H., Day, W. A., & Miesfeld, R. L. (2011). Defects in coatomer protein I (COPI) transport cause blood feeding-induced mortality in Yellow Fever mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 108(24).

Blood feeding by vector mosquitoes provides the entry point for disease pathogens and presents an acute metabolic challenge that must be overcome to complete the gonotrophic cycle. Based on recent data showing that coatomer protein I (COPI) vesicle transport is involved in cellular processes beyond Golgi-endoplasmic reticulum retrograde protein trafficking, we disrupted COPI functions in the Yellow Fever mosquito Aedes aegypti to interfere with blood meal digestion. Surprisingly, we found that decreased expression of the γCOPI coatomer protein led to 89% mortality in blood-fed mosquitoes by 72 h postfeeding compared with 0% mortality in control dsRNA-injected blood-fed mosquitoes and 3% mortality in γCOPI dsRNA-injected sugar-fed mosquitoes. Similar results were obtained using dsRNA directed against five other COPI coatomer subunits (α, β, β', δ, and ζ). We also examined midgut tissues by EM, quantitated heme in fecal samples, and characterized feeding-induced protein expression in midgut, fat body, and ovary tissues of COPI-deficient mosquitoes. We found that COPI defects disrupt epithelial cell membrane integrity, stimulate premature blood meal excretion, and block induced expression of several midgut protease genes. To study the role of COPI transport in ovarian development, we injected γCOPI dsRNA after blood feeding and found that, although blood digestion was normal, follicles in these mosquitoes were significantly smaller by 48 h postinjection and lacked eggshell proteins. Together, these data show that COPI functions are critical to mosquito blood digestion and egg maturation, a finding that could also apply to other blood-feeding arthropod vectors.

Chamberlain, N. L., Driver, E. D., & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Research, 22(15), 3181-3186.

PMID: 8065934;PMCID: PMC310294;Abstract:

Some transcription factors contain stretches of polyglutamine encoded by repeats of the trinucleotide CAG. Expansion of the CAG repeat in the androgen receptor (AR) has been correlated with the incidence and severity of X-linked spinal and bulbar muscular atrophy (Kennedy's disease). In order to understand the relationship of this mutation to AR function, we constructed ARs that varied in the position and size of the polyglutamine tract, and assayed for the abilities of these mutant receptors to bind androgen and to activate transcription of several different AR-responsive reporter genes. Elimination of the tract in both human and rat AR resulted in elevated transcriptional activation activity, strongly suggesting that the presence of the polyglutamine tract is inhibitory to transactivation. Progressive expansion of the CAG repeat in human AR caused a linear decrease of transactivation function. Importantly, expansion of the tract did not completely eliminate AR activity. We postulate that this residual AR activity may be sufficient for development of male primary and secondary sex characteristics, but may fall below a threshold level of activity necessary for normal maintenance of motor neuron function. This functional abnormality may be representative of other genetic diseases that are associated with CAG expansion mutations in open reading frames, such as spinocerebellar ataxia type I and Huntington's disease.

Miesfeld, R., Scaraffia, P. Y., Zhang, Q., Thorson, K., Wysocki, V. H., & Miesfeld, R. L. (2010). Differential ammonia metabolism in Aedes aegypti fat body and midgut tissues. Journal of insect physiology, 56(9).

In order to understand at the tissue level how Aedes aegypti copes with toxic ammonia concentrations that result from the rapid metabolism of blood meal proteins, we investigated the incorporation of (15)N from (15)NH(4)Cl into amino acids using an in vitro tissue culture system. Fat body or midgut tissues from female mosquitoes were incubated in an Aedes saline solution supplemented with glucose and (15)NH(4)Cl for 10-40min. The media were then mixed with deuterium-labeled amino acids, dried and derivatized. The (15)N-labeled and unlabeled amino acids in each sample were quantified by mass spectrometry techniques. The results demonstrate that both tissues efficiently incorporate ammonia into amino acids, however, the specific metabolic pathways are distinct. In the fat body, the (15)N from (15)NH(4)Cl is first incorporated into the amide side chain of Gln and then into the amino group of Gln, Glu, Ala and Pro. This process mainly occurs via the glutamine synthetase (GS) and glutamate synthase (GltS) pathway. In contrast, (15)N in midgut is first incorporated into the amino group of Glu and Ala, and then into the amide side chain of Gln. Interestingly, our data show that the GS/GltS pathway is not functional in the midgut. Instead, midgut cells detoxify ammonia by glutamate dehydrogenase, alanine aminotransferase and GS. These data provide new insights into ammonia metabolism in A. aegypti mosquitoes.

Dieken, E. S., Meese, E. U., & Miesfeld, R. L. (1990). nti glucocorticoid receptor transcripts lack sequences encoding the amino-terminal transcriptional modulatory domain. Molecular and Cellular Biology, 10(9), 4574-4581.

PMID: 2388618;PMCID: PMC361045;Abstract:

Glucocorticoid induction of cell death (apoptosis) in mouse lymphoma S49 cells has long been studied as a molecular genetic model of steroid hormone action. To better understand the transcriptional control of glucocorticoid-induced S49 cell death, we isolated and characterized glucocorticoid receptor (GR) cDNA from two steroid-resistant nti S49 mutant cell lines (S49.55R and S49.143R) and the wild-type parental line (S49.A2). Our data reveal that nti GR transcripts encode intact steroid- and DNA-binding domains but lack 404 amino-terminal residues as a result of aberrant RNA splicing between exons 1 and 3. Results from transient cotransfection experiments into CV1 cells using nti receptor expression plasmids and a glucocorticoid-responsive reporter gene demonstrated that the truncated nti receptor exhibits a reduced transcriptional regulatory activity. Gene fusions containing portions of both the wild-type and the nti GR-coding sequences were constructed and used to functionally map the nti receptor mutation. We found that the loss of the modulatory domain alone is sufficient to cause the observed defect in nti transcriptional transactivation. These results support the proposal that glucocorticoid-induced S49 cell death requires GR sequences which have previously been shown to be required for transcriptional regulation, suggesting that steroid-regulated apoptosis is controlled at the level of gene expression.