Tally M Largent-Milnes

Tally M Largent-Milnes

Assistant Professor, Pharmacology
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-6400

Research Interest

Dr. Tally Largent-Milnes Ph.D., is a Research Assistant Professor of Pharmacology at the University of Arizona. Dr. Largent-Milnes is a member of the International Association for the Study of Pain, the Society for Neuroscience, and the American Pain Society. Her major research focus is on trigeminal (Vc) synaptic physiology, neuropathic pain and rational design of multifunctional compounds to treat chronic pain. Dr. Largent-Milnes uses whole-cell patch clamp electrophysiology, immunohistochemistry, behavior, and pharmacology, to explore excitatory synaptic transmission between trigeminal afferents and nucleus caudalis (Vc) neurons as well as the adaptations that accompany certain pathologies/pharmacological interventions. Her work is critical to improve our understanding of the construction of the trigeminal system at the synaptic level, and will allow for the development of better therapeutics to treat select craniofacial pain disorders through her research.

Publications

Largent-Milnes, T. M., Guo, W., Wang, H., Burns, L. H., & Vanderah, T. W. (2008). Oxycodone plus ultra-low-dose naltrexone attenuates neuropathic pain and associated mu-opioid receptor-Gs coupling. The journal of pain : official journal of the American Pain Society, 9(8), 700-13.

Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in mu-opioid receptor (MOR)-G protein coupling from G(i/o) to G(s) that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L(5)/L(6) spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to G(s) in the damaged (ipsilateral) spinal dorsal horn. This MOR-G(s) coupling occurred without changing G(i/o) coupling levels and without changing the expression of MOR or Galpha proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-G(s) coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-G(s) coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this G(s) coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-G(s) coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain.

Fawley, J. A., Hofmann, M. E., Largent-Milnes, T. M., & Andresen, M. C. (2015). Temperature differentially facilitates spontaneous but not evoked glutamate release from cranial visceral primary afferents. PloS one, 10(5), e0127764.

Temperature is fundamentally important to all biological functions including synaptic glutamate release. Vagal afferents from the solitary tract (ST) synapse on second order neurons in the nucleus of the solitary tract, and glutamate release at this first central synapse controls autonomic reflex function. Expression of the temperature-sensitive Transient Receptor Potential Vanilloid Type 1 receptor separates ST afferents into C-fibers (TRPV1+) and A-fibers (TRPV1-). Action potential-evoked glutamate release is similar between C- and A-fiber afferents, but TRPV1 expression facilitates a second form of synaptic glutamate release in C-fibers by promoting substantially more spontaneous glutamate release. The influence of temperature on different forms of glutamate release is not well understood. Here we tested how temperature impacts the generation of evoked and spontaneous release of glutamate and its relation to TRPV1 expression. In horizontal brainstem slices of rats, activation of ST primary afferents generated synchronous evoked glutamate release (ST-eEPSCs) at constant latency whose amplitude reflects the probability of evoked glutamate release. The frequency of spontaneous EPSCs in these same neurons measured the probability of spontaneous glutamate release. We measured both forms of glutamate from each neuron during ramp changes in bath temperature of 4-5 °C. Spontaneous glutamate release from TRPV1+ closely tracked with these thermal changes indicating changes in the probability of spontaneous glutamate release. In the same neurons, temperature changed axon conduction registered as latency shifts but ST-eEPSC amplitudes were constant and independent of TRPV1 expression. These data indicate that TRPV1-operated glutamate release is independent of action potential-evoked glutamate release in the same neurons. Together, these support the hypothesis that evoked and spontaneous glutamate release originate from two pools of vesicles that are independently modulated and are distinct processes.

Ramos-Colon, C. N., Lee, Y. S., Remesic, M., Hall, S. M., LaVigne, J., Davis, P., Sandweiss, A. J., McIntosh, M. I., Hanson, J., Largent-Milnes, T. M., Vanderah, T. W., Streicher, J., Porreca, F., & Hruby, V. J. (2016). Structure-Activity Relationships of [des-Arg(7)]Dynorphin A Analogues at the κ Opioid Receptor. Journal of medicinal chemistry, 59(22), 10291-10298.

Dynorphin A (Dyn A) is an endogenous ligand for the opioid receptors with preference for the κ opioid receptor (KOR), and its structure-activity relationship (SAR) has been extensively studied at the KOR to develop selective potent agonists and antagonists. Numerous SAR studies have revealed that the Arg(7) residue is essential for KOR activity. In contrast, our systematic SAR studies on [des-Arg(7)]Dyn A analogues found that Arg(7) is not a key residue and even deletion of the residue does not affect biological activities at the KOR. In addition, it was also found that [des-Arg(7)]Dyn A(1-9)-NH2 is a minimum pharmacophore and its modification at the N-terminus leads to selective KOR antagonists. A lead ligand, 14, with high affinity and antagonist activity showed improved metabolic stability and could block antinociceptive effects of a KOR selective agonist, FE200665, in vivo, indicating high potential to treat KOR mediated disorders such as stress-induced relapse.

Sandweiss, A. J., McIntosh, M. I., Moutal, A., Davidson-Knapp, R., Hu, J., Giri, A. K., Yamamoto, T., Hruby, V. J., Khanna, R., Largent-Milnes, T. M., & Vanderah, T. W. (2017). Genetic and pharmacological antagonism of NK1 receptor prevents opiate abuse potential. Molecular psychiatry.

Development of an efficacious, non-addicting analgesic has been challenging. Discovery of novel mechanisms underlying addiction may present a solution. Here we target the neurokinin system, which is involved in both pain and addiction. Morphine exerts its rewarding actions, at least in part, by inhibiting GABAergic input onto substance P (SP) neurons in the ventral tegmental area (VTA), subsequently increasing SP release onto dopaminergic neurons. Genome editing of the neurokinin 1 receptor (NK1R) in the VTA renders morphine non-rewarding. Complementing our genetic approach, we demonstrate utility of a bivalent pharmacophore with dual activity as a μ/δ opioid agonist and NK1R antagonist in inhibiting nociception in an animal model of acute pain while lacking any positive reinforcement. These data indicate that dual targeting of the dopaminergic reward circuitry and pain pathways with a multifunctional opioid agonist-NK1R antagonist may be an efficacious strategy in developing future analgesics that lack abuse potential.Molecular Psychiatry advance online publication, 9 May 2017; doi:10.1038/mp.2017.102.

Tumati, S., Largent-Milnes, T. M., Keresztes, A. I., Yamamoto, T., Vanderah, T. W., Roeske, W. R., Hruby, V. J., & Varga, E. V. (2012). Tachykinin NK₁ receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation. European journal of pharmacology, 684(1-3), 64-70.

Prolonged morphine treatment increases pain sensitivity in many patients. Enhanced spinal Substance P release is one of the adaptive changes associated with sustained opioid exposure. In addition to pain transmitting second order neurons, spinal microglia and astrocytes also express functionally active Tachykinin NK₁ (Substance P) receptors. In the present work we investigated the role of glial Tachykinin NK₁ receptors in morphine withdrawal-mediated spinal microglia and astrocyte activation. Our data indicate that intrathecal co-administration (6 days, twice daily) of a selective Tachykinin NK₁ receptor antagonist (N-acetyl-L-tryptophan 3,5-bis(trifluoromethyl)benzylester (L-732,138; 20 μg/injection)) attenuates spinal microglia and astrocyte marker and pro-inflammatory mediator immunoreactivity as well as hyperalgesia in withdrawn rats. Furthermore, covalent linkage of the opioid agonist with a Tachykinin NK₁ antagonist pharmacophore yielded a bivalent compound that did not augment spinal microglia or astrocyte marker or pro-inflammatory mediator immunoreactivity and did not cause paradoxical pain sensitization upon drug withdrawal. Thus, bivalent opioid/Tachykinin NK₁ receptor antagonists may provide a novel paradigm for long-term pain management.