Biology

Russell S Witte

Professor, Medical Imaging
Professor, Biomedical Engineering
Professor, Applied Mathematics - GIDP
Professor, Neurosurgery
Professor, Optical Sciences
Professor, Neuroscience - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-0346

Work Summary

We develop cutting-edge imaging technology, integrating light, ultrasound and electricity, to diagnose and treat diseases ranging from epilepsy to breast cancer. Novel sources for ultrasound contrast include optical and microwave absorption, mechanical strain, and electrical current. We visualize electrical brain “stormsˮ during uncontrollable seizures and envision “smartˮ photoacoustic agents that seek-and-destroy deadly tumors.

Research Interest

Dr. Russell Witte, a native Tucsonan, received a BS degree with honors in physics from the University of Arizona in Tucson (1993). Following travel abroad in Europe and Brazil, he began graduate studies in bioengineering at Arizona State University. His doctoral thesis (PhD, 2002) used chronic microelectrode arrays to describe sensory coding and learning-induced plasticity in the mammalian brain. He then moved to the University of Michigan in Ann Arbor and, as a post doc in the Biomedical Ultrasonics Laboratory, developed novel hybrid imaging techniques that integrate ultrasound, light, and/or microwaves for medical applications. In 2007, Dr. Witte returned to Tucson and is now Associate Professor of Medical Imaging, Optical Sciences and Biomedical Engineering at the University of Arizona. Dr. Witte’s Experimental Ultrasound and Neural Imaging Laboratory (EUNIL) devises cutting-edge imaging technology, integrating light, ultrasound and microwaves to diagnose and treat diseases ranging from chronic tendon disorders (tendinopathies) and irregular cardiac rhythms (arrhythmias) to breast cancer. By integrating different forms of energy, special effects are created that enable ultrasound imaging of optical absorption deep in tissue (photoacoustic imaging), mapping current source densities in the beating heart (acoustoelectric imaging), and elasticity imaging of human muscle and tendon for quantifying tissue mechanical properties. Dr. Witte's research further extends into nanotechnology and smart contrast agents, which have applications to functional brain imaging, cardiovascular disease, and cancer. Dr. Witte works closely with collaborators in the Colleges of Engineering, Optical Sciences and Medicine, as well as industry, to develop cutting-edge imaging technologies that potentially improve patient care. Dr. Witte is also a member of the Arizona Cancer Center, Sarver Heart Center and School of Mind, Brain, and Behavior, as well as the Neuroscience, Applied Mathematics, and Biomedical Engineering graduate interdisciplinary programs (GIDPs). Dr. Witte's vision is to develop a new generation of young investigators steeped in multiple disciplines branching from neuroscience, neural engineering, biochemistry, mathematics, biomedical imaging and, physics. He welcomes dreamers, brainstormers and problems solvers to join his team in search of the next great discovery in physics and medicine. Keywords: Biomedical Engineering/Medical Imaging

Rod A Wing

Director, Plant Genomics Institute
Bud Antle Endowed Chair For Excellence, Agriculture-Life Sciences
Professor, Plant Science
Professor, Ecology and Evolutionary Biology
Regents Professor
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9595

Work Summary

Harnessing 15MY of natural variation in the genus Oryza (rice) to help solve the 10-billion people question: i.e. how do we feed our world without destroying our world.

Research Interest

Rod Wing, PhD, and his lab, The Arizona Genomics Institute, specialize in building what geneticists call a physical map of a genome- a crucial foundation of any genome sequencing effort. AGI has earned a reputation for providing extremely high-quality maps, as documented in previous sequencing efforts leading to the genome sequences of rice and corn. The genome sequence will allow scientists to locate and identify genes that can improve and strengthen crops and increase yield in order to help solve the Earth’s looming food crisis by creating new strains of the cereal crops that make up 60% of humankind’s diet. Keywords: Genome Biology, Genome Sequencing/Assembly/Annotation, Food Security, Rice

Diana E Wheeler

Assistant Research Scientist, Entomology
Primary Department
Department Affiliations
Contact
(520) 621-3273

Research Interest

Diana Wheeler, PhD, and her research interests are dominated by the physiological basis of caste differences in social insects, especially ants. Why ants? She is especially interested in the relevance of physiology to both social organization and evolution of insect sociality. Research has included included regulation of oogenesis, storage of proteins by adult workers and queens, mechanisms of sperm storage by queens, and, of course, caste determination.Dr. Wheeler is working on the molecular basis of caste determination in honey bees. Since caste is determined by the diet larvae receive, caste determination involves signaling pathways that are fundamental to pathways regulated by nutrition in all organisms, even single-celled ones. Insulin and TOR signaling pathways are turning out to be especially important. Her team also works to understand how pathways are shaped by natural selection acting at the level of the colony, in addition to the level of the individual.

Anne M Wertheimer

Retired Assistant Research Professor
Director, VIPER Institute
Primary Department
Department Affiliations
Contact
(520) 626-5850

Research Interest

Microbe-host interactions Specifically microbial pathogenesis Concomitant immune response with respect to host age

Bruce Walsh

Professor, Ecology and Evolutionary Biology
Professor, Public Health
Professor, Plant Sciences
Adjunct Professor, Animal and Comparative Biomedical Sciences
Adjunct Professor, Molecular and Cellular Biology
Professor, Applied Mathematics - GIDP
Professor, Entomology / Insect Science - GIDP
Professor, Genetics - GIDP
Professor, Statistics-GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-1915

Research Interest

Bruce Walsh is a Professor of Ecology and Evolutionary Biology at the University of Arizona and also a Professor in the College of Public Health. He is also an Adjunct Professor in the Departments of Animal Sciences, Plant Sciences, and Molecular and Cellular Biology, and the former Chair of two Graduate Interdisciplinary Programs: Genetics and Statistics. Dr. Walsh is internationally known for his work on the genetics of complex traits, and is coauthor of the leading graduate text on Quantitative Genetics. He is a frequently-invited speaker at national and international meetings, being a keynote speaker at the last Two World Congresses in Quantitative Genetics (China and Scotland) as well as at the most recent Gordon Conference in Quantitative Genetics. Dr. Walsh routinely teaches several international graduate/ post-graduate courses each year in areas ranging from animal and plant breeding, to evolutionary genetics, to human applications, and has taught in Australia, Belgium, China, Costa Rica, Denmark, Finland, Holland, Korea, New Zealand, Portugal, Scotland, and Sweden in additional to numerous domestic short courses. Most recently, in conjunction with BIO5, he has started the Tucson Winter Institute in Plant Breeding, whose propose is to train academic and industry plant breeders from around the world in the latest techniques in genomics, statistics, and bioinformatics as they relate to improving plant production. Keywords: "Statistical Genetics" "plant and animal breeding"

VK Viswanathan

Professor, Animal and Comparative Biomedical Sciences
Co-Director, Collaboratory for Anti-infectives and Therapeutics
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Contact
(520) 626-7687

Work Summary

Around the world, diarrhea kills ninety children every hour. My laboratory uses the latest technology to understand how bacteria cause diarrhea in children. In addition to providing clues for new ways to prevent disease, our research helps us understand how the body maintains good health.

Research Interest

Dr. Viswanathan’s research efforts over the past 12 years have focused on the mechanisms of pathogenesis of the diarrheal disease pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC). His laboratory characterized EPEC and EHEC virulence factors (specifically those secreted into host cells) and evaluates their effect on host cell physiology including barrier function, cell death pathways, and effects on innate immune responses. His specialization is innate immune signaling by intestinal epithelial cells in vitro and in vivo, and includes the use of cutting-edge technologies such as in vivo phosphoproteomics, and single-cell manipulation during bacterial infection. He also offers a very popular upper-division course in pathogenic bacteriology, and actively mentors undergraduate and graduate students, and post-doctoral fellows at the UA. Keywords: Pathogenic E. coli, Clostridium difficile, infection, host-pathogen interactions

Koen Visscher

Associate Professor, Physics
Associate Professor, Molecular and Cellular Biology
Associate Professor, Optical Sciences
Associate Professor, Applied Mathematics - GIDP
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations

Research Interest

Koen Visscher is an Associate Professor in the Department of Physics with an interest in Biological Physics. He holds joint appointments in Molecular and Cellular Biology as well as in the College of Optical Sciences, and is a member of the Applied Mathematics Graduate Interdisciplinary Program. His research focuses on the role of mechanical force in Biology using single-molecule techniques such as optical tweezers. He pioneered the so called molecular force clamp, a feedback controlled optical tweezers that is able to maintain a constant force on a single individual moving motor protein. Recent interests are RNA structure, nucleic acid-protein interactions interactions, and translational recoding via -1 frameshifting.

Richard R Vaillancourt

Associate Professor, Pharmacology and Toxicology
Director, Bachelor of Science - Pharmaceutical Sciences Program
Associate Department Head, Pharmacology and Toxicology
Associate, Center for Toxicology
Associate Professor, BIO5 Institute
Associate Professor, Cancer Biology - GIDP
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 626-4374

Research Interest

Richard Vaillancourt, PhD, studies the regulation of serine/threonine protein kinase pathways that function in stress-related signal transduction pathways. These intracellular serine/threonine protein kinase pathways, which are referred to as mitogen-activated protein (MAP) kinase pathways, are activated by a number of hormones, growth factors, cytokines, and environmental agents. Currently, at least five MAP kinase pathways have been identified, and there are many protein kinases that function within a defined MAP pathway. One role for these sequential kinase pathways is to transmit an extracellular signal from the plasma membrane to the nucleus. Simply stated, these sequential protein kinase pathways provide the cell with an intracellular signal, which elicits a biological response that is appropriate for the type of stimulus. The cytoplasmic kinases that transmit the signal from the plasma membrane to various MAP kinase proteins include the MAP/Extracellular signal-regulated kinase (ERK) Kinase Kinase (MEKK) proteins. To date, at least four MEKK proteins have been identified based on a homology to similar protein kinases found in the budding yeast, Saccharomyces cerevisiae. However, the extracellular molecules that regulate the MEKK proteins remain largely undefined in mammalian cells. A major focus in Dr. Vaillancourt's lab is to characterize the role of MEKK3 and MEKK4 in cellular signal transduction pathways. Current research focuses on the regulation of MEKK3 by the serine/threonine kinase, Akt, which functions in cell survival pathways and the inhibition of apoptosis. In another project, Dr. Vaillancourt and his team are characterizing the regulation of MEKK4 in response to arsenic in human keratinocytes. Finally, they are also studying the role of the PITSLRE protein kinase in the regulation of tyrosine hydroxylase, as it relates to nicotine signal transduction.

Josef Vagner

Research Professor
Director, Ligand Discovery Laboratory
Research Associate Professor, Pharmacology
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-4179

Research Interest

Josef Vagner, PhD, is an Associate Research Professor at the University of BIO5 Research Institute and the Director of the Ligand Discovery Laboratory. Dr. Vagner is expert in the field of drug discovery and development, and he is focused on the design, synthesis, purification, characterization and screening of compound arrays.He has published over 70 original research papers and 31 patents. He is a frequent presenter at national and international meetings (American Chemical Society and Peptide Societies).Dr. Vagner designed and developed of compounds for in vivo pharmacologic applications and translation programs. He has over 25 years experience in synthesis and structural analysis of de novo ligands for various biological targets, including a recent focus on ligands targeting GPCRs and multivalent ligands. These experiences include 10 years of work in the pharmaceutical industry (Sanofi/ Selectide, Novo Nordisk, Discovery Partner International) where he specialized in combinatorial chemistry and array synthesis of small molecules. During his time in industry, he supervised teams of workers who successfully accomplished the synthesis of more than ten large libraries (with >10,000 compounds each).

Jana M U'Ren

Assistant Professor, Ecosystem Genomics
Assistant Professor, Agricultural-Biosystems Engineering
Assistant Professor, Animal and Comparative Biomedical Sciences
Assistant Professor, Genetics - GIDP
Assistant Professor, BIO5 Institute
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-1607

Work Summary

We study the biodiversity, biogeography, evolutionary origins, and ecological roles of plant-associated microorganisms. We use a combination of traditional culture-based microbiology, functional assays, and next-generation 'omics tools to study microbial symbiont communities in diverse lineages of land plants at scales ranging from local to global. We are interested in characterizing the biotic and abiotic factors shaping the assembly of plant-associated fungal communities, how community structure and diversity impacts ecosystem function, and the evolutionary dynamics of fungal symbiont evolution in the context of closely related pathogens and saprotrophs.

Research Interest

I am an integrative microbial ecologist with training in microbial ecology, evolutionary biology, mycology, and genomics. I am an Assistant Professor of Ecosystem Genomics in the Department of Agricultural and Biosystems Engineering and the BIO5 Institute. I completed a BA in Biological Sciences from the University of Missouri-Columbia and my PhD in Plant Pathology from University of Arizona’s School of Plant Sciences. Keywords: plant-microbe interactions, comparative genomics, microbial ecology, fungal endophytes