Brain

Erika D Eggers

Associate Department Head, Research - Physiology
Member of the Graduate Faculty
Professor, BIO5 Institute
Professor, Biomedical Engineering
Professor, Neuroscience - GIDP
Professor, Physiological Sciences - GIDP
Professor, Physiology
Primary Department
Department Affiliations
Contact
(520) 626-7137

Work Summary

My laboratory studies how the retina takes visual information about the world and transmits it to the brain. We are trying to understand how this signaling responds to changing amounts of background light and becomes dysfunctional in diabetes.

Research Interest

The broad goal of research in our laboratory is to understand how inhibitory inputs influence neuronal signaling and sensory signal processing in the healthy and diabetic retina. Neurons in the brain receive inputs that are both excitatory, increasing neural activity, and inhibitory, decreasing neural activity. Inhibitory and excitatory inputs to neurons must be properly balanced and timed for correct neural signaling to occur. To study sensory inhibition we use the retina, a unique preparation which can be removed intact and can be activated physiologically, with light, in vitro. Thus using the retina as a model system, we can study how inhibitory synaptic physiology influences inhibition in visual processing. This intact system also allows us to determine the mechanisms of retinal damage in early diabetes. Keywords: neuroscience, diabetes, vision, electrophysiology, light

Thomas P Davis

Professor, Pharmacology
Professor, Pharmacology and Toxicology
Professor, Neuroscience - GIDP
Professor, Physiological Sciences - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(951) 858-5720

Research Interest

Thomas Davis, PhD, and his lab continue its long-term CNS biodistribution research program, funded by NIH since 1981, by studying the mechanisms involved in delivering drugs across the blood-brain barrier to the C.N.S. during pathological disease states. Recently, Dr. Davis and his lab discovered specifica drug transporters which can be targeted to enhance delivery. They are also interested in studying the effect of hypoxia/aglycemia/inflammatory pain on endothelial cell permeability and structure at the blood-brain barrier. Dr. Davis has recently shown that short-term hypoxia/aglycemia leads to significant alterations in permeability which can be reversed by specific calcium channel antagonists. This work has significant consequences to the study of stroke. Additionally, he has discovered that peripheral pain has significant effects on BBB tight junction protein cytoarchitecture leading to variations in the delivery of analgesics to the CNS.

Haijiang Cai

Associate Professor, Neuroscience
Associate Professor, Translational Neuroscience
Associate Professor, Neuroscience - GIDP (
Associate Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations

Work Summary

Dr. Haijiang Cai's lab studies neural circuitry mechanism of behaviors in health and disease, and develop research tools as well as disease therapies. Recently, the lab has identified specific neural circuits in a brain region called amygdala that play important roles in both emotion and feeding behavior, which could be targeted to treat eating disorders or depression.

Research Interest

Feeding and anxiety are two conserved behaviors critical to survival and health in all mammals. These two behaviors are interacting with each other in health and disease. Patients with abnormal feeding behaviors during eating disorders or obesity are usually associated with anxiety and depression. These two behaviors are controlled by distinct neural circuits distributed across multiple brain regions. However, whether the neural circuits underlying these two behaviors have overlap or interactions is still unknown. The lab of Dr. Haijiang Cai studies the neural circuits of animal behaviors, with a focus on understanding how the neural circuits regulate feeding and emotional behaviors. The recent work from his lab identified a specific population of neurons in the amygdala, a brain region well known for emotion control, also plays important roles in appetite control. His lab is using state-of-the-art optogenetics, chemogenetics, electrophysiology and in vivo microendoscope calcium imaging to dissect the neural circuits. This research will help understand how feeding and anxiety interact with each other, and provide new insight in developing drugs to treat eating and emotional disorders with fewer side effect. Keywords: Neural circuits, Behavior, Feeding, Anxiety

John JB Allen

Professor, Psychology
Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Professor, Neuroscience - GIDP
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-7448

Work Summary

Depression is a major health problem that is often chronic or recurrent. Existing treatments have limited effectiveness, and are provided wihtout a clear indication that they will match a particular patient's needs. In this era of precision medicine, we strive to develop neurally-informed treatments for depression and related disorders.

Research Interest

Dr. Allen’s research spans several areas, but the main focus is the etiology and treatment of mood and anxiety disorders. His work focuses on identifying risk factors for depression using electroencephalographic and autonomic psychophysiological measures, especially EEG asymmetry, resting state fMRI connectivity, and cardiac vagal control. Based on these findings, he is developing novel and neurally-informed treatments for mood and anxiety disorders, including Transcranial Ultrasound, EEG biofeedback, and Transcranial Direct Current and Transcranial Alternating Current stimulation. Other work includes understanding how emotion and emotional disorders influence the way we make decisions and monitor our actions. Keywords: Depression, Neuromodulation, EEG, Resting-state fMRI

Gene E Alexander

Professor, Psychology
Professor, Psychiatry
Professor, Evelyn F Mcknight Brain Institute
Professor, Neuroscience - GIDP
Professor, Physiological Sciences - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-1704

Work Summary

My research focuses on advancing our understanding of how and why aging impacts the brain and associated cognitive abilities. I use neuroimaging scans of brain function and structure together with measures of cognition and health status to identify those factors that influence brain aging and the risk for Alzheimer's disease. My work also includes identifying how health and lifestyle interventions can help to delay or prevent the effects of brain aging and Alzheimer's disease.

Research Interest

Dr. Alexander is Professor in the Departments of Psychology and Psychiatry, the Evelyn F. McKnight Brain Institute, and the Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs of the University of Arizona. He is Director of the Brain Imaging, Behavior and Aging Lab, a member of the Internal Scientific Advisory Committee for the Arizona Alzheimer’s Consortium, and a member of the Scientific Advisory Board for the Arizona Evelyn F. McKnight Brain Institute. He received his post-doctoral training in neuroimaging and neuropsychology at Columbia University Medical Center and the New York State Psychiatric Institute. Prior to coming to Arizona, Dr. Alexander was Chief of the Neuropsychology Unit in the Laboratory of Neurosciences in the Intramural Research Program at the National Institute on Aging. Dr. Alexander has over 20 years experience as a neuroimaging and neuropsychology researcher in the study of aging and age-related neurodegenerative disease. He is a Fellow of the Association for Psychological Science and the American Psychological Association (Division 40) Society for Clinical Neuropsychology. His research has been supported by grants from the National Institutes of Health, the Evelyn F. McKnight Brain Research Foundation, the State of Arizona, and the Alzheimer’s Association. He uses structural and functional magnetic resonance imaging (MRI) and positron emission tomography (PET) combined with measures of cognition and behavior to investigate the effects of multiple health and lifestyle factors on the brain changes associated with aging and the risk for Alzheimer’s disease. Keywords: "Aging/Age-Related Disease", "Brain Imaging", "Cognitive Neurosicence", "Alzheimer's Disease"