Medical imaging

Maria I Altbach

Professor, Medical Imaging
Professor, Biomedical Engineering
Director, MRI Innovation
Vice Chair, Faculty Affairs
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
520-626-5532

Work Summary

My lab develops magnetic resonance imaging (MRI) techniques with an emphasis on quantitative imaging to improve the diagnosis of early disease and the effect of treatment. Main areas of disease focus are cancer, cardiovascular, and metabolic disorders. A focus of our work is clinical translation, thus the methods that we developed provide high quality and accurate quantitative imaging within the time constraints of a clinical MRI scan. Support for our work is provided by the National Institutes of Health, the Arizona Biomedical research Centre, the American Heart Association, and industry and our technology is distributed worldwide.

Research Interest

Dr. Altbach is Professor in the Departments of Medical Imaging and Biomedical Engineering. Dr. Altbach has over 20 years of experience directing a lab that develops novel MRI technology for quantitative MRI. Her research focuses on the development of new quantitative biomarkers to assess early stages or risk of disease as well as to predict response to treatment with the goal of translating the novel technology to the clinic. To adhere to the time constraints of clinical MRI examinations, her work is based on the design of acquisition and reconstruction techniques that yield images and quantitative maps from significantly less data than conventional methods, thus improving imaging efficiency and patient comfort. Her team of basic scientists, engineers and clinicians work together with industry to optimize the novel techniques for human imaging. Dr. Altbach's work has been funded by the National Institutes of Health, the American Heart Association, the Arizona Biomedical Research Center and industry and technology developed in her lab is distributed worldwide. Current disease areas being investigated with the quantitative MRI technology developed in Dr. Altbach's lab are the detection and characterization of small abdominal lesions, deemed too-small-to-diagnose with current imaging modalities; early staging of non-alcoholic fatty liver disease to prevent progression to liver cancer; and the characterization of the arterial wall in carotid artery disease to predict stroke.

Elizabeth B Hutchinson

Assistant Professor, Biomedical Engineering
Member of the Graduate Faculty
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations

Research Interest

Elizabeth Hutchinson, PhD joined the University of Arizona department of biomedical engineering in 2019 as an assistant professor in the focus area of biomedical imaging. Her educational background and research interests span both imaging science and neuroscience with the goal of using advanced imaging approaches to develop and understand novel imaging markers of brain changes in neurologic disorders – particularly in traumatic brain injury (TBI). Her research combines human-similar pre-clinical models with cutting edge MRI methodology in order to advance translational neuroimaging tools for the understanding, diagnosis and treatment of brain disorders.

Russell S Witte

Professor, Medical Imaging
Professor, Biomedical Engineering
Professor, Applied Mathematics - GIDP
Professor, Neurosurgery
Professor, Optical Sciences
Professor, Neuroscience - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-0346

Work Summary

We develop cutting-edge imaging technology, integrating light, ultrasound and electricity, to diagnose and treat diseases ranging from epilepsy to breast cancer. Novel sources for ultrasound contrast include optical and microwave absorption, mechanical strain, and electrical current. We visualize electrical brain “stormsˮ during uncontrollable seizures and envision “smartˮ photoacoustic agents that seek-and-destroy deadly tumors.

Research Interest

Dr. Russell Witte, a native Tucsonan, received a BS degree with honors in physics from the University of Arizona in Tucson (1993). Following travel abroad in Europe and Brazil, he began graduate studies in bioengineering at Arizona State University. His doctoral thesis (PhD, 2002) used chronic microelectrode arrays to describe sensory coding and learning-induced plasticity in the mammalian brain. He then moved to the University of Michigan in Ann Arbor and, as a post doc in the Biomedical Ultrasonics Laboratory, developed novel hybrid imaging techniques that integrate ultrasound, light, and/or microwaves for medical applications. In 2007, Dr. Witte returned to Tucson and is now Associate Professor of Medical Imaging, Optical Sciences and Biomedical Engineering at the University of Arizona. Dr. Witte’s Experimental Ultrasound and Neural Imaging Laboratory (EUNIL) devises cutting-edge imaging technology, integrating light, ultrasound and microwaves to diagnose and treat diseases ranging from chronic tendon disorders (tendinopathies) and irregular cardiac rhythms (arrhythmias) to breast cancer. By integrating different forms of energy, special effects are created that enable ultrasound imaging of optical absorption deep in tissue (photoacoustic imaging), mapping current source densities in the beating heart (acoustoelectric imaging), and elasticity imaging of human muscle and tendon for quantifying tissue mechanical properties. Dr. Witte's research further extends into nanotechnology and smart contrast agents, which have applications to functional brain imaging, cardiovascular disease, and cancer. Dr. Witte works closely with collaborators in the Colleges of Engineering, Optical Sciences and Medicine, as well as industry, to develop cutting-edge imaging technologies that potentially improve patient care. Dr. Witte is also a member of the Arizona Cancer Center, Sarver Heart Center and School of Mind, Brain, and Behavior, as well as the Neuroscience, Applied Mathematics, and Biomedical Engineering graduate interdisciplinary programs (GIDPs). Dr. Witte's vision is to develop a new generation of young investigators steeped in multiple disciplines branching from neuroscience, neural engineering, biochemistry, mathematics, biomedical imaging and, physics. He welcomes dreamers, brainstormers and problems solvers to join his team in search of the next great discovery in physics and medicine. Keywords: Biomedical Engineering/Medical Imaging

Theodore P Trouard

Professor, Biomedical Engineering
Professor Emeritus
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-2177

Research Interest

Dr. Trouard is an Associate Professor of Biomedical Engineering and Medical Imaging and a member of the Evelyn F. McKnight Brain Institute. His research involves the development and application of novel magnetic resonance imaging (MRI) techniques to understand human health and effectively treat disease. Dr. Trouard’s multidisciplinary work spans a range from basic studies of cell culture systems, to studies of preclinical animal models of disease, to clinical imaging in humans. Many aspects of this work are directed towards understanding and treatment of neurological disorders including Alzheimer's Disease, Niemann Pick Type C disease, Stroke and Cancer.

Dianne K Patterson

Staff Scientist, Neuroimaging
Contact
(520) 621-1644

Work Summary

I analyze MRI images to understand more about how human language works. We use functional MRI to determine which brain regions are involved in different language tasks. We also look at diffusion MRI to learn about the quality of the wiring between regions.

Research Interest

I do neuroimaging, specifically fMRI and DTI. I am especially interested in brain networks and developments in neuroimaging software. We use independent component analysis to identify separate networks in the brain related to processing and learning language. My colleagues and I worked to improve fMRI analysis, display and data sharing options. Beginning with a web-based workbench designed for the dynamic exploration of map-based data, we worked to develop brain maps that could be similarly explored and demonstrated that this approach yielded results similar to those achieved by much more laborious and manual exploration techniques. This has improved our ability to streamline analyses, extract insights from our data and share data online. I have also worked on DWI analysis of the language system for the past 8 years. This has resulted in contributions to tract analyses (Wilson et al., 2011) and to the development of a novel technique (Patterson et al., 2015) to extract not only information about the properties of each tract but also information about the size and location of connected grey matter regions. We continue to explore the implications of these new measures. Keywords: fMRI, DWI, Language, Neuroimaging, MRI

Matthew A Kupinski

Professor, Optical Sciences
Professor, Radiology
Professor, Applied Mathematics - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-2967

Work Summary

Matthew Kupinski works in diverse areas of imaging including x-ray, gamma-ray, diffuse optical, magnetic resonance, and neutron imaging.

Research Interest

My research interests are in the field of theoretical image science with emphasis on medical imaging. I currently study task-based measures of image quality in which one must define the task the images are to be used for and the observer who will be performing this task, to properly measure and optimize the quality of images and imaging systems. We take the stance that imaging systems should be designed to best enable the observer to detect tumors and not base design decisions on resolution, contrast, etc. Topics in my research group include accurate system modeling, statistical modeling, observer performance metrics, signal-detection theory and general image science.

Leonid Kunyansky

Professor, Mathematics
Professor, Applied Mathematics - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-4509

Work Summary

I develop mathematics of biomedical imaging. All modalities of tomography imaging rely heavily on mathematical algorithms for forming an image. I develop the theory and the algorithm enabling this technology.

Research Interest

Biomedical imaging, in general, and various modalities of tomography are now an important part of medical practice and biomedical research. I develop mathematics of biomedical imaging. All modalities of tomography imaging rely heavily on mathematical algorithms for forming an image. My work involves developing the theory and the algorithm enabling this technology. By developing these techniques further, I contribute to improving health and life in the 21st century. Keywords: Electromagnetic and acoustic scattering; wave propagation; photonic crystals; spectral properties of high contrast band-gap materials and operators on graphs; computerized tomography.

Aneta Kielar

Assistant Professor, Speech/Language and Hearing
Assistant Professor, Cognitive Science - GIDP
Assistant Professor, BIO5 Institute
Contact
(520) 621-1644

Work Summary

My research examines neural factors which affect language functions, and how these change across life-span and are influenced by stroke, brain injury and neurodegenerative disorders. In my work, I use combination of cognitive measures and multimodal neuroimaging techniques (fMRI, EEG/ERPs, MEG). I am also interested in recovery of function, and treatment approaches involving speech-language therapy in combination with noninvasive brain stimulation techniques.

Research Interest

My research program is centered on investigating the neurobiology of healthy language system, and changes in cognitive and language processing associated with stroke and neurological disorders. My interests include incorporating cognitive measures and multimodal neuroimaging methods, with a goal to understand the relationship between language and other aspects of cognition, as well as the neural dynamics related to brain damage, resilience, and recovery. My research efforts are directed towards identifying factors which affect language comprehension and production, and how these change with development and are influenced by aging, stroke, brain injury, and neurodegenerative disorders, including Primary Progressive Aphasia (PPA) and Alzheimer’s disease (AD). I study language processing at the multiple levels, using behavioral experiments and both structural (DTI, lesion-symptom mapping, voxel-based morphometry) and functional neuroimaging (fMRI, EEG, MEG). In addition, I am interested in neuroplasticity and application of noninvasive brain stimulation techniques (e.g., TMS, tDCS) to the treatment of aphasia and dementia. The long-term goal of my research is to understand the cognitive and neural processes that support recovery of cognitive and language functions after stroke. Keywords: stroke, aphasia, dementia, MRI, EEG, Language

Dongkyun Kang

Assistant Professor, Optical Sciences
Assistant Professor, Biomedical Engineering
Assistant Professor, BIO5 Institute
Primary Department
Contact
(520) 621-6997

Work Summary

We are developing low-cost in vivo microscopy devices that can visualize cellular details of human tissues in vivo and help disease diagnosis and treatment in low-resource settings, high-speed tissue microscopy technologies that can examine entire organ under risk of having malignant diseases and detect small, early-stage lesions, and miniature microscopy devices that have the potential to examine anatomically-challenging human organs and facilitate integration of microscopic imaging with other imaging modalities.

Research Interest

My research is focused on developing novel optical microscopy technologies and improving patient care using these technologies. My research area includes (1) low-cost smartphone in vivo microscopy, (2) high-speed comprehensive in vivo endomicroscopy, and (3) ultraminiature endomicroscopy. (1) Low-cost smartphone in vivo microscopy: I am currently leading a NIH-sponsored research project for developing smartphone confocal microscope and diagnosing Kaposi's sarcoma in Uganda with the smartphone confocal microscope. I will further advance the smartphone microscopy technology and address other applications, including diagnosis of cervical and oral cancers in low-resource settings, large-population screening of skin cancers in the US, and aiding science and medical educations. (2) High-speed comprehensive in vivo endomicroscopy: I have previously developed a high-speed confocal microscopy system and endoscopic imaging catheters and acquired largest in vivo confocal images of human organ reported. At the UA, I plan to further advance the technology by i) increasing the imaging speed by orders of magnitude and ii) incorporating fluorescence imaging modality. (3) Ultraminiature endomicroscopy: In my previous research, I have developed miniature endoscopic catheters that can visualize internal organs in vivo through a needle-sized device. At the UA, I will develop microscopic imaging catheter with a extremely small diameter and utilize it for guiding cancer diagnosis and treatment.

Jennifer Kehlet Barton

Director, BIO5 Institute
Thomas R. Brown Distinguished Chair in Biomedical Engineering
Professor, Agricultural-Biosystems Engineering
Professor, Biomedical Engineering
Professor, Electrical and Computer Engineering
Professor, Medical Imaging
Professor, Optical Sciences
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 626-0314

Work Summary

I develop new optical imaging devices that can detect cancer at the earliest stage. Optics has the resolution and sensitivity to find these small, curable lesions, and we design the endoscope that provide access to organs inside the body. .

Research Interest

Jennifer Barton, Ph.D. is known for her development of miniature endoscopes that combine multiple optical imaging techniques, particularly optical coherence tomography and fluorescence spectroscopy. She evaluates the suitability of these endoscopic techniques for detecting early cancer development in patients and pre-clinical models. She has a particular interest in the early detection of ovarian cancer, the most deadly gynecological malignancy. Additionally, her research into light-tissue interaction and dynamic optical properties of blood laid the groundwork for a novel therapeutic laser to treat disorders of the skin’s blood vessels. She has published over 100 peer-reviewed journal papers in these research areas. She is currently Professor of Biomedical Engineering, Electrical and Computer Engineering, Optical Sciences, Agriculture-Biosystems Engineering, and Medical Imaging at the University of Arizona. She has served as department head of Biomedical Engineering, Associate Vice President for Research, and is currently Director of the BIO5 Institute, a collaborative research institute dedicated to solving complex biology-based problems affecting humanity. She is a fellow of SPIE – the International Optics Society, and a fellow of the American Institute for Medical and Biological Engineering. Keywords: bioimaging, biomedical optics, biomedical engineering, bioengineering, cancer, endoscopes