Psychology

Melanie D Hingle

Associate Professor, Nutritional Sciences
Associate Professor, Public Health
Member of the Graduate Faculty
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-3087

Work Summary

Melanie Hingle's work focuses on understanding determinants of energy balance behaviors (i.e. how and why behaviors are initiated and sustained), and identifying contributors to the success of interventions (i.e. when, where, and how interventions should be delivered) are critical steps toward developing programs that effectively change behavior, thereby mitigating unhealthy weight gain and promoting optimal health. Current projects include: Determinants of metabolic risk, and amelioration of risk, in pediatric cancer survivors, Guided imagery intervention delivered via a mobile software application to increase healthy eating and physical activity in weight-concerned women smokers, and Family-focused diabetes prevention program delivered in partnership with the YMCA.

Research Interest

Identify and understand determinants of behavioral, weight-related, and metabolic outcomes in children, adolescents, and families, including how and why so-called “obesogenic behaviors” (unhealthy dietary habits, sedentary behaviors) are initiated and sustained. Develop and test novel approaches to motivate healthy lifestyle changes in children, adolescents, and families, including development, testing, and assessment of face-to-face and mobile device-based interventions.

Matthew Dennis Grilli

Assistant Professor, Psychology
Assistant Professor, Evelyn F Mcknight Brain Institute
Assistant Professor, Neurology
Assistant Professor, Cognitive Science - GIDP
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-7447

Work Summary

My research interests are broadly focused on understanding how and why we store and retrieve memories. The clinical and cognitive neuroscience research conducted in my laboratory combines neuropsychological, cognitive, social psychological, and neuroimaging approaches. An emphasis of my current research is autobiographical memory, which refers to memories of personal experiences. Ongoing projects are investigating how autobiographical memory is affected in several populations, including older adults at risk for Alzheimer’s disease and individuals with acquired brain injury. We also are interested in understanding how changes to autobiographical memory impact other aspects of cognition, and we seek to develop new interventions to improve autobiographical memory and everyday functioning.

Research Interest

My research interests are broadly focused on understanding the reciprocal relations of self and memory. How does the self influence learning and memory retrieval? How does memory contribute to one's sense of self? Uncovering the ways in which the self and memory interact may advance understanding of identity, elucidate the conditions and experiences that modify the self, and inspire clinical interventions that improve quality of life and wellbeing for people who have neurological or mental health conditions. Ongoing projects are investigating how to improve memory through self-referential encoding strategies in individuals with traumatic brain injury and other neuropsychological conditions. My current research also is investigating how individuals with amnesia (a profound learning and memory impairment) construct a sense of self and experience a sense of continuity in life.

Katalin M Gothard

Professor, Physiology
Assistant Professor, Evelyn F Mcknight Brain Institute
Assistant Professor, Neurobiology
Associate Professor, Neurology
Associate Professor, Physiological Sciences - GIDP
Member of the Graduate Faculty
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-1448

Work Summary

The broad goal of Katalin Gothard's research is to understand the neural basis of emotion and social behavior. Her lab work reveals the real-time dynamic interactions in multiple systems implicated in emotion regulation and the mechanisms by which emotional responses produce immediate behavioral effects.

Research Interest

The broad goal of my research is to understand the neural basis of emotion and social behavior in non-human primates. Our laboratory pioneered multichannel neural recordings from the amygdala of monkeys engaged in naturalistic social interactions. Neural activity was monitored simultaneously with cardiovascular and other autonomic parameters of emotion to capture unique, coordinated brain-body states. These states, and the transitions between them, are the neural underpinnings of our emotional experiences and the memory thereof. I bring to BIO5 expertise from a broad and diverse range of sources. I earned a medical in Romania in 1988, followed by postgraduate training in neurosurgery, and a Ph.D. in Neuroscience in 1996 at the University of Arizona. As a student, I explored the neural dynamics of spatial learning and memory in rats and determine the interaction of multiple spatial reference frames during navigation. I completed by postdoctoral studies at the UC Davis in primate socio-emotional behavior and the neurophysiological basis of communication with facial expressions. While at Davis, I received a K01 career development award that allowed me to assemble the largest existent annotated video library of macaque social behavior. I used this library to probe the behavioral and neural events that are the basic building blocks of social behavior (e.g., eye contact, the reciprocation of facial expressions, and gaze following). We discovered a specialized class of cell in the monkey brain that are active exclusively in the context of natural social behaviors and respond selectively to eye contact. We have developed techniques of precisely targeted bilateral microinjections in the primate brain and implemented successfully neural recording and parallel with microinjections of drugs and hormones. Currently we are testing the effect of various drugs in the activity of eye cells in the amygdala.

Fabian Fernandez

Assistant Professor, Psychology
Assistant Professor, Evelyn F Mcknight Brain Institute
Assistant Professor, Neurology
Assistant Professor, Neuroscience - GIDP
Assistant Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-7447

Work Summary

Fabian-Xosé Fernandez's work includes a focus on parsing the logic used by the circadian pacemaker to interpret multidimensional light patterns, developing light-emitting diode (LED) photo-stimulation protocols to improve mental and physical health across the lifespan, and understanding the role that nocturnal wakefulness plays in suicide risk and developing countermeasures centered around light exposure.

Research Interest

Fabian-Xosé Fernandez, PhD, Departments of Psychology and Neurology, McKnight Brain InstituteCircadian timekeeping is fundamental to human health. Unfortunately, under many clinical circumstances, the temporal organization of our minds and bodies can stray slowly from the Universal Time (UT) that is set with the Earth’s rotation. This disorganization has been linked to progression of several age-related and psychiatric diseases. Non-invasive phototherapy has the potential to improve disease outcomes, but the information that the brain’s clock tracks in twilight (or any electric light signal) to assure that a person entrains their sleep-wake cycles to the outside world is not understood. The central theme of my research program is to fill in this blank and to usher in an era where therapeutically relevant “high-precision” light administration protocols are institutionalized at the level of the American Medical and Psychiatric Associations to change the standard of care for a wide variety of conditions that impair quality of life. Of the conditions my lab is currently studying, we are particularly interested in how chronic and quick, sequenced light exposure can be designed to: 1. promote normal healthy aging and 2. strengthen adaptive cognitive/emotional responses to being awake in the middle of the night (12-6AM), a key interval of the 24-h cycle that we have associated with increased suicidal ideation and mortality. Our circadian work on suicide is done in very close partnership with the University of Arizona Sleep Health and Research Program directed by Dr. Michael A. Grandner.

Haijiang Cai

Associate Professor, Neuroscience
Associate Professor, Translational Neuroscience
Associate Professor, Neuroscience - GIDP (
Associate Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations

Work Summary

Dr. Haijiang Cai's lab studies neural circuitry mechanism of behaviors in health and disease, and develop research tools as well as disease therapies. Recently, the lab has identified specific neural circuits in a brain region called amygdala that play important roles in both emotion and feeding behavior, which could be targeted to treat eating disorders or depression.

Research Interest

Feeding and anxiety are two conserved behaviors critical to survival and health in all mammals. These two behaviors are interacting with each other in health and disease. Patients with abnormal feeding behaviors during eating disorders or obesity are usually associated with anxiety and depression. These two behaviors are controlled by distinct neural circuits distributed across multiple brain regions. However, whether the neural circuits underlying these two behaviors have overlap or interactions is still unknown. The lab of Dr. Haijiang Cai studies the neural circuits of animal behaviors, with a focus on understanding how the neural circuits regulate feeding and emotional behaviors. The recent work from his lab identified a specific population of neurons in the amygdala, a brain region well known for emotion control, also plays important roles in appetite control. His lab is using state-of-the-art optogenetics, chemogenetics, electrophysiology and in vivo microendoscope calcium imaging to dissect the neural circuits. This research will help understand how feeding and anxiety interact with each other, and provide new insight in developing drugs to treat eating and emotional disorders with fewer side effect. Keywords: Neural circuits, Behavior, Feeding, Anxiety

John JB Allen

Professor, Psychology
Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Professor, Neuroscience - GIDP
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Department Affiliations
Contact
(520) 621-7448

Work Summary

Depression is a major health problem that is often chronic or recurrent. Existing treatments have limited effectiveness, and are provided wihtout a clear indication that they will match a particular patient's needs. In this era of precision medicine, we strive to develop neurally-informed treatments for depression and related disorders.

Research Interest

Dr. Allen’s research spans several areas, but the main focus is the etiology and treatment of mood and anxiety disorders. His work focuses on identifying risk factors for depression using electroencephalographic and autonomic psychophysiological measures, especially EEG asymmetry, resting state fMRI connectivity, and cardiac vagal control. Based on these findings, he is developing novel and neurally-informed treatments for mood and anxiety disorders, including Transcranial Ultrasound, EEG biofeedback, and Transcranial Direct Current and Transcranial Alternating Current stimulation. Other work includes understanding how emotion and emotional disorders influence the way we make decisions and monitor our actions. Keywords: Depression, Neuromodulation, EEG, Resting-state fMRI