Improving Health

UArizona Researchers Team Up to Address COVID-19 with the Help of TRIF and BIO5 Support

researchers in white lab coats examining a specimen
Research projects will address the pandemic from various angles, including public health, virology and drug discovery.

As of April 28, more than 6,500 COVID-19 cases have been reported in the state of Arizona. To address this burden on a local and global scale, thirteen UArizona teams have been awarded more than half a million dollars to explore virology, prevention and treatment, epidemiology, and psychology associated with COVID-19.

For nearly 20 years, the Technology and Research Initiative Fund (TRIF) has enabled UArizona researchers to conduct high-impact work by building up the scientific expertise and specialized equipment capacity at UArizona that allows swift response to scientific crises such the COVID-19 pandemic. In the last four year cycle, projects in infectious disease, immune system, and respiratory function have been seeded with over $5.8M.

As a rapid response to the pandemic, TRIF resources were quickly used to establish a seed grant mechanism. Interdisciplinary teams of two or more researchers representing their individual colleges and the BIO5 Institute were encouraged to pitch basic science, technology, clinical or population-based research projects that directly addressed COVID-19.

Fifty-five teams submitted seed grant applications. Their proposals were judged on potential impact, teamwork and use of core facilities.

Thirteen successful applicants were awarded up to $60K each. Over the next six months, teams will quickly pivot their existing research and draw upon their unique skills to address wide-ranging aspects of the pandemic.
 

Team of researchers working together
Genetics, Evolution and the Viral Lifecycle

Representing the College of Medicine – Tucson, Samuel Campos, Scott Boitano and Ken Knox will study an evolutionarily adapted aspect of the novel coronavirus. By understanding the modification of a key viral structure, Campos, Boitano and Knox aim to provide insight on infection and disease spread. Data and knowledge generated from their work may inform potential prevention and treatment strategies.

team of researchers working together

Identifying Potential COVID-19 Therapeutics through Image-Based Screening
Curtis Thorne, assistant professor in the Department of Cellular and Molecular Medicine, and Koenraad Van Doorslaer, assistant professor in the College of Agriculture and Life Sciences, will use image-based screening to identify compounds that prevent viral replication in lung cells. They’ll also develop a technique to study replication of the novel coronavirus and plan to share it with other UArizona researchers studying COVID-19.

Team of researcher working together

The Use of Copper in Preventing Viral Persistence
Not just a coating for pennies, copper has been shown to have a negative effect on the novel coronavirus. Virologist Van Doorslaer will also team Michael Johnson, assistant professor of immunobiology, to investigate the ability of copper compounds to prevent the infection and replication of a related coronavirus. If successful, the team will test successful compounds against the novel COVID-19 virus.

Team of researchers working together

Improving Efficacy and Minimizing Toxicity of Anti-Malarial Drugs Against COVID-19
Chloroquine and hydroxychloroquine, two anti-malarial drugs, have shown promise as COVID-19 treatments through clinical studies in France, Italy and China. However, researchers are concerned about the safety and effectiveness of these compounds. Jianqin Lu and Xinxin Ding of the College of Pharmacy will use nanotechnology to improve the delivery of these drugs. Through this method, they aim to enhance drug efficacy and minimize toxicity.
Team of Researchers working together
Boosting the Immune System to Combat COVID-19
Directly targeting the virus is just one strategy researchers can use to treat COVID-19. Because of the severe gap in knowledge regarding the novel coronavirus, some researchers propose that developing a virus-targeted approach may not be quickly achievable. Instead, Lu will team with Yin Chen to explore whether enhancing COVID-19 patients’ immune systems can treat their infections.

Team of researchers working together

Novel Compounds to Enhance Anti-COVID-19 Activity and Safety
Because clinical studies of anti-malarial drugs have provided uncertain evidence regarding their utility, a third pharmacy team will test novel inhibitors in treating existing infections. Wei Wang, Steffan Nawrocki and Jennifer Carew will use the anti-malarial drugs as the foundation for designing similar, yet distinct compounds. By doing so, these experts in drug discovery and viral biology aim to identify new compounds which may prove to be safer and more efficacious.

Team of researchers working together

A Local Patient Database to Study Local COVID-19 Impact
Researchers representing medicine, pharmacy and the Mel and Enid Zuckerman College of Public Health will collect COVID-19 patient data from BUMC-T inpatient and BUMC Family Medicine Clinics. With this information, Karen Lutrick, Dean Billheimer and Brian Erstad will create a local database to allow for a greater understanding of disease impact on our local health system. Further, this database will provide a useful tool for future COVID-19 UArizona research efforts.

Team of researchers working together
Creating Foundations to Understand COVID-19 in Arizona
A public health team will also create a database to better understand the short- and long-term impacts of COVID-19 in our area. Kristen Pogreba-Brown, Kate Ellingson, Pamela Garcia-Filion, Elizabeth Jacobs and Kacey Ernst will collect data from patient interviews to determine acute risk factors and disease symptoms. They will also initiate a long-term study to generate a database that can be used by all Arizona investigators addressing COVID-19.

Team of researchers working together

Characterization of Critically Ill COVID-19 Arizonan Patients
Because our current understanding of the disease is limited to emerging, highly variable case reports, a third team will produce a database with information on hospitalized COVID-19 patients in our state. Vignesh Subbian, assistant professor in the College of Engineering will work with Jarrod Moiser of COM-T to compile patient characteristics and document the safety of their care. Through their efforts, they aim to better understand the clinical characteristics and courses of seriously ill COVID-19 patients in Arizona.

Team of Researchers working together

Using Genetics to Study the Origin and Spread of COVID-19 in Southern Arizona
To date, only one viral genome has been recorded for Arizona COVID-19 cases. Michael Worobey and David Baltrus plan to add nearly 40 more genomes to GenBank, a repository curated by the National Institutes of Health. In addition to contributing data, the group seeks to understand the relationship of the Arizona outbreak to the national epidemic. By comparing viral genomes across the country, the group plans to determine origin of COVID-19 in Southern Arizona and the number of transmission chains in the area.

Team of researchers working together

Understanding Vulnerability to COVID-19
The novel coronavirus is highly infectious in older adults and those with pre-existing critical health conditions. The reasons for this vulnerability are currently unknown. Immunobiology department head Janko Nikolich- Žugich and associate professor Deepta Bhattacharya will work with Craig Weinkauf, assistant professor in the Department of Surgery, to determine the links between these populations and COVID-19 susceptibility.

Team of researchers working together

COVID-19 Risk in Wastewater Treatment Facilities
In addition to traveling through droplets in the air generated by a sneeze or cough, the novel coronavirus passes through the feces of infected individuals. These live viruses can become airborne in wastewater treatment plants, posing a threat to facility workers. A team of five researchers – Luisa Ikner, Walter Betancourt, Jeff Prevatt, Kelly Reynolds and Ian Pepper – will study the risk of the airborne virus to facility worker health.

 

Team of researchers working together

COVID-19 and Brain Function
A hallmark of COVID-19 is the impairment of respiratory function. However, a fourteenth project will assess the cognitive impact of COVID-19. Funded by the Center for Innovation in Brain Science, Lee Ryan of the COS and Meredith Hay of the COM-T will utilize an existing database of over 50,000 individuals to understand brain-related impacts of the infection.

 

About the University of Arizona BIO5 Institute
The BIO5 Institute at the University of Arizona connects and mobilizes top researchers in agriculture, engineering, biomedicine, pharmacy, basic science, and computational science to find creative solutions to humanity’s most pressing health and environmental challenges. Since 2001, this interdisciplinary approach has been an international model of how to conduct collaborative research, and has resulted in disease prevention strategies, promising new therapies, innovative diagnostics and devices, and improved food crops.
For more information: BIO5.org (Follow us: Facebook | Twitter | YouTube | Instagram | LinkedIn).

Local Opinion: The Novel Threat of COVID-19

Royalty free photo by Viktor Forgacs
AZ Daily Star

Dr. Felicia Goodrum Sterling, Immunobiology professor with UArizona College of Medicine-Tucson and BIO5 faculty, discusses the COVID -19 epidemic including our ability and responsibility to protect our community and those most vulnerable. Relatively simple non-pharmaceutical interventions have been effective in limiting infectious disease. These include: washing your hands, covering coughs and sneezes, staying home when sick, disinfecting common areas and surfaces, and social distancing (e.g. avoiding handshakes).

Revolutionizing liver tissue engineering and transplants

Science Talks Podcast Episode 52 Featuring Ekta Minocha
Dr. Ekta Minocha shares how her research on stem cells aims to provide hope and innovative solutions to people suffering from liver disease and canc

Induced pluri-potent stem cells (iPSC) are widely used in therapeutics for disease modeling, regenerative medicine, and drug discovery. Using patients’ cells, scientists can regenerate their cells into iPSC and recreate new organs for patients who need them. Amy Randall-Barber from the BIO5 Institute was joined on Science Talks by Dr. Ekta Minocha, a 2023 BIO5 postdoctoral fellow working in the Jason Wertheim lab at the University of Arizona College of Medicine – Tucson. Dr. Minocha's work focuses on the development of bioartificial liver tissues. She hopes that one day they can replace a failing liver in the human body and expedite the waiting time associated with organ transplants.


This interview has been edited for length and clarity.

ARB: Let’s start with a couple of ice-breaker questions as usual. Do you have a hidden talent? If so, what is it?

Yes, I like doing embroidery and glass painting. I remember, when I was in school during my summer vacations, I used to do embroidery on cushion covers and pillow covers. I also gave my grandma a handkerchief which I embroidered as a gift. And gifted a few glass paintings to my friends and relatives.

 

ARB: So, now I know that you like embroidery! What other kind of designs do you like to make?

I like making flowers and embellishing items like cushion covers or pillow covers with mirrors and colorful threads. I enjoy adding different types of stitches to make them beautiful. 
 

ARB: Who is your favorite Disney character and why?

Mickey Mouse is my favorite Disney character. I like him for his cute smile, innocence, and kindness.

 

ARB: Would you rather travel to the past or the future?

I would like to travel to the future because I am a curious person. I want to know what is going to happen in the future.

 

ARB: So, what brought you to the University of Arizona and BIO5 Institute from India, where you attended Sanjay Gandhi Post Graduate Institute of Medicine?

Since my school days, I have always had a passion for science, particularly biology. The concept of how a single cell can develop into a whole individual has always fascinated me. So, I decided to pursue my passion for science by getting a doctorate degree in the field of stem cells and tissue regeneration.  

As I was nearing the completion of my thesis, I learned about Dr. Jason Wertheim's research at the University of Arizona, which aligned perfectly with my interests and expertise in stem cells and regenerative medicine. I applied for a postdoctoral position in his lab, went through the interview process, and was fortunate enough to be selected.  

I have found the environment here to be incredibly supportive, with people open to collaborations and exciting research happening at the University of Arizona and BIO5 Institute.

 

ARB: Ah, that is good to hear about stories of such exciting research happening. Can you tell us about your overall research goals? Or the overall research goals of Dr. Wertheim’s lab?

The overarching research objective is to create transplantable liver tissues capable of repairing or replacing failing organs, thereby reducing transplantation waiting times. To achieve this goal, I am focused on generating liver organoids, miniature organs in a dish that mimic the functions of a normal liver. Particularly, I am utilizing these organoids to model a liver disease known as non-alcoholic steatohepatitis (NASH) and to investigate the underlying mechanisms of this condition.

 

ARB: Does Dr. Wertheim's lab only work on liver?

In addition to liver research, Dr. Wertheim's lab also works on kidney studies and is involved in bioprinting and the development of bioartificial scaffolds.

 

ARB: Can you tell us about your specific project in the lab and how you became a part of that project?

Yes, my main project is developing liver organoids. So, I am using these organoids to model liver disease called nonalcoholic steatohepatitis. And I am also using them to understand the underlying mechanisms of how this disease is caused.  

So, the long-term goal is to see whether we can transplant them into patients. Right now, I am waiting to see whether these liver organoids have the potential to be transplanted into animals to assess their functionality and engraftment abilities.

 

ARB: Can you tell us what challenges you've had during some of your experiments over your time in science?

Yes, working with induced pluripotent stem cells, or iPSCs, is quite challenging, as everyone knows. We come to the lab every day to change the media. Plus, iPSCs are like spoiled children! They behave differently, sometimes, you do everything in an analogous way, following the same pattern. But the next day, you come to the lab and see that all the cells have died. There is no apparent reason for this, but iPSCs behave that way. So, the major challenge is culturing iPSCs and working with them. Since our starting material is iPSCs, we must depend on them. They must grow better so we can make the organoids to progress our research.

 

ARB: So where do you get these IPSCs from?

We acquired some iPSCs from a stem cell bank in California. Additionally, we reprogram some of them from patients with NASH (nonalcoholic steatohepatitis). For this, we collect peripheral blood mononuclear cells (PBMCs) from NASH patients or patients undergoing liver transplantation. The reprogramming of PBMCs into iPSCs is conducted at Northwestern University, where we collaborated with Dr. Richard Green.  

Once we obtain the stem cells, we perform experimental work here at the University of Arizona.

 

ARB: You were a 2023 BIO5 postdoctoral fellow. Can you share how you first discovered this opportunity and discuss how the fellowship supported your project?

I learned about the BIO5 postdoctoral fellowship opportunity through my mentor, Dr. Wertheim. He encouraged me to apply for the grant.

The specific aim of the fellowship was to investigate the interrelationship between innate and environmental factors in non-alcoholic steatohepatitis (NASH). To achieve this, I used IPSC-derived hepatocytes and cultured them under various stiffness conditions to explore how the environment influences their behavior. This research focused on understanding the connection between innate biological factors and environmental drivers in the development of NASH. We observed that changes in stiffness altered the lipid species and influenced the gene expression levels of genes responsible for lipid production.

 

ARB: Can you tell us how close we are to being able to use the tissues that you have developed for organ transplants in place of traditional organ transplants?

Currently, we are still in the preclinical trial phase, so there is still a long way to go before we can proceed to clinical trials for transplantation. Induced pluripotent stem cells offer numerous benefits but also come with limitations. One significant challenge is their inherent heterogeneity and the variability observed from batch to batch. For example, in liver organoids, we expect the major cell population to be hepatocytes, but sometimes we observe an abundance of non-parenchymal cell types instead. Overcoming this batch-to-batch variation is crucial before considering transplantation into patients.

 

ARB: Thank you for doing this important work. Eventually, you will nail this and be able to heal many people hopefully. So, do you have a mentor that has impacted your life?  

Yes, certainly, I have been incredibly fortunate to have had outstanding mentors throughout my life. My parents have been my biggest mentors, providing unwavering support, encouragement, and motivation every step of the way. I owe a great deal of gratitude to them for their constant guidance.  

Additionally, during my educational journey, I have been privileged to have mentors like Dr. Sonia Nathan, Dr. C.P. G. Srivastava, Mr. Vinod Pandey, and Lina Chatterjee, who have played pivotal roles in shaping my path. Here at the University of Arizona, Dr. Jason Wertheim has been a remarkable mentor. His guidance, motivation, and inspiration have been instrumental in my growth and development. Working under his mentorship has truly helped me refine my skills and abilities.

 

ARB: Yeah, I can only imagine what it must be like to be in your shoes, pursuing a PhD and then working for Dr. Wertheim. His work is renowned, and he is known to be a brilliant and wonderful man! Do you think you will stay at the University of Arizona, or you will go elsewhere?

I'm a J1 scholar, so I am subject to a two-year home residency rule after completing my current program. Therefore, I will be heading to India for the next two years. During this time, I will be seeking job positions in India while also applying for grants here. My long-term plan is to pursue faculty positions in India.

 

ARB: Do you already know who you would like to work with in India?

I will see, there are positions, I will apply for them, but they are extremely limited.

 

ARB: Well, I'm sure they will be glad to have you and everything you have learned while you were here. Can you elaborate on why you do what you do? What got you into it?  

Liver cancer is a significant cause of mortality, and currently, transplantation is the primary therapeutic option available to patients. However, this approach has limitations, particularly the need for a matched donor.  

Therefore, my focus is on developing transplantable liver tissues using the patient's own cells to avoid rejection. If successful, this could revolutionize treatment by providing alternative therapeutic options and significantly reducing transplant waiting times.  

This is the driving force behind my work—to offer hope and innovative solutions to patients suffering from liver cancer.

 

ARB: Well, thank you so much for being here with us today and telling us about your work. Do you want to share anything about your work or time here at the university?

It has been an incredible experience collaborating with some amazing researchers. Dr. John Purdy has been instrumental in our lipidomics work, while Dr. Nathan Cherrington, a mentor during my postdoc, has been invaluable for our studies on drug metabolism.  

Additionally, we are exploring the impact of flow on organoids through microfluidics research, with assistance from Dr. Yitshak Zohar from the aeronautical and mechanical engineering department.  

The collaborative atmosphere here is truly remarkable. People are helpful and open to collaboration, which makes it more enjoyable. Science thrives on collaboration, doesn't it? I would also like to add that Dr. Wertheim always encourages collaboration. He is consistently open to collaborations and promotes me to take on leadership roles during collaborative meetings, encouraging me to explain my work and contribute actively.

 

ARB: That's wonderful. Well, thank you again for being here. We really appreciate your time and you for sharing your information about your project and your story.

Pioneering technologies in nanoscience and medicine

Science Talks Podcast Episode 51 Featuring Frederic Zenhausern
Dr. Frederic Zenhausern shares his long and fascinating scientific journey, from rapid DNA testing to organoid-based drug discovery, that spans the ever-evolving landscape of scientific innovation.

See how an interdisciplinary scientific approach shaped the future of molecular diagnostics and personalized healthcare on a global scale. Amy Randall-Barber from the BIO5 Institute was joined on Science Talks by Dr. Frederic Zenhausern, director of the Center for Applied NanoBioscience and Medicine (ANBM) at the University of Arizona College of Medicine - Phoenix, among many other appointments in the college including in Basic Medical Science, Radiation Oncology, Biomedical Engineering, and Clinical Translational Science. Prior to coming to the university, Dr. Zenhausern co-founded and directed the Flexible Display Center at ASU MacroTechnology Works. He received his bachelor’s degree in biochemistry from the University of Geneva, an MBA in finance from Rutgers University, and his doctorate in applied physics from the Department of Condensed Physics Matters at the University of Geneva in Switzerland. Dr. Zenhausern is an inventor, mastering interdisciplinary work in science, technology and healthcare, to drive clinical translation.  

  


This interview has been edited for length and clarity.

 

ARB: Let’s start with a couple of ice-breaker questions to lighten up the mood. What was your dream job as a kid? 

When I was a kid, I loved animals and I wanted to be a vet. 

 

ARB: What would you like to be known or remembered for? 

What I think is interesting is in my training and professional career, I call myself a true interdisciplinary scientist.  

I think I demonstrated how interdisciplinary science brings ideas across many different areas of scientific and engineering technologies. I developed some basic optical sciences while I was at IBM, a product platform at Motorola labs. Even now at the University of Arizona, we have developed a technology that goes through the FDA and brings practical solutions in life sciences, bio defense and healthcare. We have a very broad portfolio of technological impact. 
 

 

ARB: You started off in Switzerland, and you ended up in Arizona. Can you tell us how you ended up here?  

That’s a long story. When I was in Switzerland, I did my PhD thesis in partnership between the University of Geneva and University of Lausanne, but also IBM Research in Zurich. And after my PhD, I was looking for a postdoctoral position. I got a beautiful location at UC Santa Barbara with a nice beach and my wife was happy! We were ready to move to California, but IBM twisted my arm and said you should come and work for us at the IBM Research Lab, located in Bronx. And it was a difficult sell, but ultimately a great experience for us. 

In the years that the MIT-IBM Watson AI Lab would develop different technology platforms, including DNA sequencing, I was the first to bring a real virus for IBM to look at using high resolution microscopy techniques. We made a lot of different discoveries which then led me to develop all kinds of technologies.  

In a move to Princeton, New Jersey, I was a part of a Swiss chemical company developing new technology mimicking the human nose and looking at electronic nose technology. I also joined a photonic center at Princeton University as an industry member, which led me to start a new startup company in Princeton that was a subsidiary of a French startup, commercializing electronic nose technology. At the time, we were also discussing with David Wald at Tufts University the technology that started Illumina, that we all now know in the field of DNA sequencing.  

Also, I was recruited as one of the advisory board members in the Motorola Company. They were establishing a new biosystem in Arizona to start DNA microarray technology, and I got recruited to come to Arizona. 

 

ARB: You were inducted into the National Academy of inventors as a fellow in 2013, for the invention of a rapid DNA processor. Since you mentioned working with the inventor of Illumina, can you explain how we use the DNA processor today and how it has evolved since then? 

The goal for us has always been to try to do molecular diagnostics. When we started the technology using microfluidic devices to automate and simplify the workflow processes for preparing a specimen, we realized that any application in medicine would be a long project for us since we needed to go to the FDA for regulatory compliance.  

We also looked at other applications, where there were some elements of regulations but not as stringent. At that time, there was a big backlog of DNA fingerprinting. It was taking years until a sample could be processed. So, the Department of Justice decided to promote a new technology to solve the backlog. We came up with that technology focused around reducing work through laboratory processes and put it into a small machine.   

And that’s what we did initially with our contract with the FBI. The FBI introduced us to other countries and police forces, including the UK Forensic Science Services, or FSS. They were the leading inventors of the technology with a group at a university in the UK. They had the vision of bringing technology closer to the crime scene. Initially, we developed a technology that would go into a police van. But that scenario changed and ultimately, that technology was deployed at a police station instead. That allowed the screening of potential offenders and finding a sample much easier.  

It was a complex regulatory validation. We were a part of a larger European program called MIDAS consortium, where we validated the technology between the police forces in the UK, Germany, Austria and the Netherlands, which proved successful. In 2017, the DNA Act was modified to include rapid DNA Act to court proceedings. This marked the commercial development and widespread adoption of our technology within the Justice Department. 

 

ARB: Wow, I’m just blown away. You are currently the director of the Center for Applied Nano Bioscience here at the University of Arizona. Can you briefly tell us about the research there? 

We have a large portfolio of activities. The center consists of a group of 15 members, including mechanical engineers, physicists, MDs, PhDs, and molecular biologists. Our goal is to identify medical needs in healthcare delivery by applying engineering principles to find solutions. Collaboration is at the heart of our approach, as we work with various agencies and industry partners including NASA, NIH, and DOD.   

Typically, our projects are early-stage discovery projects.  For example, we are exploring novel drug delivery systems, using plant-derived lipids, an intrinsic agent with anti-inflammatory and antioxidant properties. Loading these lipids with different drugs or utilizing these plants for gene delivery, represents a promising avenue for drug development. 

Furthermore, we have developed an invitro system that could potentially replace animal models for testing drugs. On this platform, we combine organic chips with organoids for 3D cell culture. Under a partnership with Mitsubishi Gas Chemical company in Japan, we are scaling up the production of this technology for commercialization as it holds potential for drug testing and personalized treatment.  

We are exploring personalized medicine using organoid-based techniques to analyze genomic signatures of tumors and adapting therapies. For example, if at a hospital consultation you extract tumor cells and treat that tumor in a model, you can look at different combination of therapies that might be more appropriate for that person. By integrating these technologies, we are trying to improve patient outcomes. 

 

ARB: How long does it take for something like this to come into use? 

So, it depends. For example, when we talk about rapid DNA testing, it took about 15 years from development to implementation. On the other hand, the COVID test we developed, approved by the FDA and available on Amazon, was developed in less than a year. Now, these kinds of platform technologies for organoids will take a few years, about five years, until they can be deployed in the marketplace, because they will still be in the research platform phase. 

 

 

ARB: Thank you. Just curious because this is such amazing technology, and it is needed. 

It is a good point. Sometimes we think about getting a grant for five years, but most of the time, it's not enough time to mature technology.  

So, what are the mechanisms in academia that allow us to keep going and be part of its development, until a new company can take it? There are a few mechanisms that the government is offering. And that is why I think getting to the university's vision and sustainability of developing those kinds of technology is crucial. 

 

ARB: Absolutely. Can you share what inspired you to pursue this interdisciplinary work? Was it something you always wanted to do, or did you find your way here unexpectedly? 

That's a good question. My journey began with a background in biochemistry during college. When I reached my senior year, I embarked on a research project. Coincidentally, IBM Research in Zurich had just seen two of their scientists awarded the Nobel Prize in Physics for the discovery of the scanning tunneling microscope. This device could profile surfaces and see atoms, which fascinated me. I saw the potential for its application in molecular studies.   

So, I reached out to those scientists at IBM for a summer internship. They said, ‘we don’t do biology, we do physics.”  However, I secured the internship and, although we didn’t know what to do, we started to look at molecules using the technology. I was so excited by the experience that I decided to pursue a PhD in physics. That's how I found my passion for interdisciplinary work and everything else fell into place. 

 

 

ARB: You have focused on various scientific arenas throughout your career. However, you also pursued an MBA in finance. How do you believe that has influenced your professional journey? 

Yes, indeed. Let me provide some context first. It was back in the year 2000 when I was residing in the bustling New York area amidst a booming economy. There was this prevailing notion that Wall Street held the promise of substantial wealth creation, attracting scientific talent like mathematicians and physicists from esteemed institutions such as Princeton into venture capitalist circles.  

I was influenced by this trend. However, I also recognized that one day I wanted to have a startup company, and adding financial and managerial skills would be helpful. That’s why I enrolled in a finance-focused MBA program. Finance, with its heavy emphasis on mathematics, seemed conducive to the scientific mindset.  

The program not only equipped me with financial acumen but also enhanced softer skills crucial for effective people management and interaction. In retrospect, it proved to be an asset, and I found myself applying those principles right from the outset of my career. 

 

 

ARB: What are you currently looking forward to in your academic or personal life?  

On a personal level, I feel incredibly privileged to have two outstanding adult children who are now embarking on exciting ventures in medicine and engineering. It is a great source of immense joy for me, especially as our family continues to grow, welcoming our first grandchild.  

Professionally and academically, my focus remains on serving the community and addressing some of the grand challenges in our society. I am deeply committed to continuing this work and exploring innovative solutions.  With the rapidly changing economy, we find ourselves at the intersection of cleantech, biotech, and space tech. This convergence presents exciting opportunities as we explore and venture into new frontiers. It’s a very exciting time for us. Oh, and on a different note I love mountain biking and would like to start a new club here in Phoenix for biking enthusiasts. 

 

 

ARB: That would be so cool. We thank you again for being here with us today and sharing about your journey, your inventions, and everything that you are doing now. 

BIO5 Institute Announces Newest BIO5 Postdoctoral Fellows

2024 BIO5 Postdoctoral Fellows
Eight outstanding postdoctoral researchers were awarded the 2024 BIO5 Postdoctoral Fellowship, which aims to propel interdisciplinary researchers to the next stage of their careers.
Caroline Mosley, BIO5 Institute

Now in its sixth year, this competitive fellowship through the University of Arizona BIO5 Institute provides exceptional postdoctoral researchers with monetary awards and professional development opportunities. 

Since 2019, over 40 BIO5 Postdoctoral Fellows have been awarded $5,000 each to advance their scientific projects and gain the skills they need to become independent researchers in their respective fields. The award can be used to learn new skills in workshops, travel to conferences, or visit peer labs to further collaborations. Each fellow works with a BIO5 member as a primary mentor and forms a mentoring committee that assists them with grant applications, career advice, and job talk preparations.  

The 2024 BIO5 Postdoctoral Fellows are: Marjan AghajaniAngela GreenmanAtsushi IshiiDavid JordanZoe LyskiGemma PurserPhilip Yost, and Ran Zhang.

Seeing a need to invest in the success of postdoctoral researchers, BIO5 member Michael D.L. Johnson, associate professor in the Department of Immunobiology at the UArizona College of Medicine – Tucson, established the fellowship with support of BIO5 leadership to support cross-disciplinary projects aligned with the BIO5 mission. 

The Technology and Research Initiative Fund (TRIF) that helped launch BIO5 more than 20 years ago continues to be a catalyst in enabling effective, cross-disciplinary bioscience research, innovation, and impact at the university and in supporting the next generation of scientists through training opportunities like the BIO5 Postdoctoral Fellowship. 

Learn about the 2024 Fellows and their interdisciplinary research 

Marjan Aghajani, PhD 

Proposal Title: The role of the ER stress-inducible ribosome-binding protein 1 (RRBP1) in cardiomyocyte protection during ischemic stress 

BIO5 Member & Principal Investigator: Shirin Doroudgar, Department of Internal Medicine, UArizona College of Medicine – Phoenix  

Heart problems caused by narrowed heart arteries, or ischemic heart disease, can affect the signaling pathways and survival of the cardiac muscle cells responsible for the contraction of the heart. It's critical to understand the molecular mechanisms of these cells and pathways to prevent cell death and the resulting stress placed on the cardiovascular system. 

With a background in medical physiology, immunology, and cell biology, Marjan Aghajani is pursuing a research career focused on studying abnormal changes in body functions caused by cardiovascular disease.  

“I want to understand how cardiac muscle cells, or myocytes, respond to stressful challenges. My vision is that such responses could become the basis of new therapies for heart diseases that stress cardiac myocytes,” said Aghajani.  

Aghajani will use the BIO5 Postdoctoral Fellowship to study the molecular mechanisms involved in ischemic heart disease. Using human induced pluripotent stem cells (hiPSCs), she will focus on the role of ribosome-binding protein 1 (RRBP1) in cardiomyocyte survival under ischemic stress. The funds and mentorship will help her gain expertise in hiPSC culturing and differentiation and present her work at a heart research conference. 

Angela (Angie) Greenman, PhD 

Proposal Title: Quantifying the super-relaxed state of myosin 

BIO5 Member & Principal Investigator: Samantha Harris, Department of Physiology, UArizona College of Medicine – Tucson 

Understanding the molecular mechanisms of muscle contraction can lead to a better outcome of hypertrophic cardiomyopathy (HCM), a prevalent cause of heart failure in adults.  

Using her expertise in molecular biology, physiology, and muscle function, Angie Greenman plans to use her BIO5 Fellowship to further her career goals of becoming an independent scientist studying and teaching how skeletal and cardiac muscle function in health, disease, and under the stress of exercise. 

"I want to study the effects that cardiac and skeletal muscle proteins have on regulating contraction and relaxation in normal physiology and testing these same proteins under the stress of pathology and under the demands of exercise,” said Greenman.  

Greenman will use the BIO5 Postdoctoral Fellowship to expand her laboratory skills, particularly in fluorescent microscopy techniques related to muscle function, to study the role of cardiac myosin binding protein-C (cMyBP-C) in muscle contraction and relaxation. Funding will allow her to visit with an expert in the field at the University of Copenhagen, learning novel techniques for characterizing different states of myosin during relaxation that opens doors to new avenues of research in her field.   

Atsushi Ishii, MD, PhD 

Proposal Title: Gaining tools to probe the dynamics of brain stem cell regeneration during aging 

BIO5 Member & Principal Investigator: Lalitha Madhavan, Department of Neurology, UArizona College of Medicine – Tucson 

Understanding the effects of aging and sex hormones on neurogenesis is important for a deeper understanding of various cranial nerves and psychiatric diseases. Some central nerve diseases develop in a variety of age-dependent manners and go into spontaneous remission, while others, such as autism spectrum disorder, develop from birth and progress chronically, and others, such as Parkinson's disease and Alzheimer's disease, develop in old age. Some symptoms develop and progress over time, and symptoms change with age. 

With his long-standing interests in neurological disorders and a background working as a pediatric neurologist, Atsushi Ishii wants to research regenerative approaches for addressing age-related neurological disorders. 

“Working on neurodevelopmental disorders previously in a clinical setting, I became intrigued with the role of age-dependent changes in these contexts, which although important, were less appreciated and studied,” said Ishii. 

Ishii will use the BIO5 Postdoctoral Fellowship to investigate the molecular pathways associated with the aging of neural stem progenitor cells (NSPCs), particularly focusing on the NRF2 transcription factor and its interaction with sex hormones. He plans to visit an expert in the field at Tohuku University in Japan to learn about NRF2 biology and cutting-edge methods, as well as attend a conference around stem cell research to network and present his work.  

David Jordan, PhD 

Proposal Title: Preliminary biomechanical evaluation of the concurrency of carpal tunnel syndrome and trapeziometacarpal osteoarthritis 

BIO5 Member & Principal Investigator: Zong-Ming Li, Department of Orthopedic Surgery, UArizona College of Medicine – Tucson 

Millions of people are afflicted with carpal tunnel syndrome and osteoarthritis, musculoskeletal disorders of the hand and wrist. 

David Jordan's mechanical engineering expertise, along with his background in physiology, bioengineering, medical imaging, and computer modeling, gives him a unique multidisciplinary perspective on the biomechanical study of the hand and wrist. 

“My current research focus involves the imaging, testing and modeling of the trapeziometacarpal joint, which is the most affected hand joint by osteoarthritis. I aim to develop novel therapeutic treatment mechanisms for this disorder,” said Jordan. 

Using the BIO5 Postdoctoral Fellowship funds, Jordan will study the concurrency of carpal tunnel syndrome and osteoarthritis. He wants to identify and recruit patients with concurrent cases of these disorders and construct apparatuses for testing hand function. Jordan also plans to attend conferences focusing on orthopedic research and biomechanics to jumpstart his independent research career. 

Zoe Lyski, PhD 

Proposal Title: Uncovering mechanisms behind suboptimal immunity in immunocompromised individuals 

BIO5 Member & Principal Investigator: Deepta Bhattacharya, Department of Immunology, UArizona College of Medicine – Tucson 

As the ongoing COVID-19 pandemic has shown, people do not develop equally protective immune responses to infection and vaccination, and those with immunocompromising conditions and cancer are especially at risk. 

With expertise in immunology and virology, Zoe Lyski will use the BIO5 Postdoctoral Fellowship to further study how immune responses influence viral evolution.  

“There is an unmet need to uncover key drivers of suboptimal immunity and develop means of improving vaccine immune responses in immunocompromised patients. My project aims to help fill this knowledge gap,” said Lyski. 

Her project supported by the BIO5 Postdoctoral Fellowship will focus on understanding suboptimal immunity in cancer patients, particularly regarding antibody responses to vaccination and subsequent viral evolution. Funds will help develop targeted mRNA vaccine approaches to improve outcomes in immunocompromised patients and allow her to travel and present her research at an immunology conference.  

Gemma Purser, PhD 

Proposal Title: Investigating the role of urban forest soils in mitigating atmospheric volatile organic compound driven air pollution in cities 

BIO5 Member & Principal Investigator: Laura Meredith, School of Natural Resources and the Environment, College of Agriculture, Life & Environmental Sciences 

Volatile organic compounds (VOCs) contribute to air pollution, which has implications for human health particularly in urban areas. The presence of VOCs in the atmosphere has a variety of sources, but of rising concern are those originating from personal care items, cleaning products, and industrial solvents.

Specializing in atmospheric and analytical chemistry, Gemma Purser wants to further her understanding of microbial analysis and urban ecosystems to better study VOCs.  

“This fellowship offers a unique opportunity to explore critical questions at the intersection of urban ecology, atmospheric chemistry, and microbiology. I am excited about the potential impact of this research on understanding the role of urban forest soils in buffering the newly emerging sources of atmospheric volatile organic compounds in cities,” said Purser.  

Using funds from the BIO5 Postdoctoral Fellowship, Purser will start a collaborative independent research project with Urban Biogeochemistry program at Boston University and Aerodyne Research, Inc. (ARI) to study the interplay between urban green spaces and volatile organic compounds in improving air quality. She will use the funds to conduct soil experiments using advanced mass spectrometer instrumentation at ARI and work with Boston University to further develop her microbial analysis techniques. 

Philip Yost, PhD 

Proposal Title: Biomimetic 5-module chimeric antigen receptor therapy 

BIO5 Member & Principal Investigator: Michael Kuhns, Department of Immunology, UArizona College of Medicine – Tucson

When our immune system works correctly, it deploys T cells to detect and eliminate viruses, bacteria, and other organisms that cause disease. However, sometimes these cells go rogue, attacking healthy cells and causing autoimmune diseases such as Type 1 diabetes. 

With an extensive background in cellular and developmental biology, Philip Yost wants to have a meaningful impact on human health research using a novel approach – biomimetic engineering – to genetically engineer cells that can lead to new immunotherapy treatments. 

“Since joining the Kuhns lab in fall 2022, I have successfully established a workflow for a second-generation chimeric antigen receptor as a platform to expand from just the treatment of Type 1 diabetes and extend as an application for treatments against other diseases,” said Yost. 

Yost will use the BIO5 Postdoctoral Fellowship to design and develop a second-generation biomimetic chimeric antigen receptor (CAR) for T-cells in immunotherapy, capable of redirecting T-cells effectively. He will use the funds to enhance his immunology training through advanced courses and attending conferences.  

Ran Zhang, PhD 

Proposal Title: A fluorescence-based high throughput screening assay to target the Nsp14 ExoN of SARS-CoV-2 

BIO5 Member & Principal Investigator: Hongmin Li, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy 

Emerging and evolving coronaviruses present challenges to researchers as they must continually advance their understanding of antiviral therapies.  

With her expertise in veterinary medicine, microbiology, and virology, Ran Zhang aims to provide valuable insights into potential antiviral drug development for coronaviruses. 

“Given the current global emphasis on antiviral research, particularly considering recent pandemics, there's a heightened demand for professionals with specialized knowledge in antiviral drug development. I want to contribute to groundbreaking discoveries that can have a profound effect on public health,” said Zhang. 

With the BIO5 Postdoctoral Fellowship, Zhang will research the role of non-structural protein 14 (nsp14) in coronaviruses' replication, particularly SARS-CoV-2, and develop a high-throughput screening assay to identify inhibitors of nsp14 activity. The funds and mentorship allow Zhang to design, implement, and test experiments that will help her understand viral replication mechanisms and add to the development of antiviral therapies. 

Using Big Data to Target Gene Mutations in Cancer Tumor Cells

Dominos, the one in the middle is red!
UArizona Health Sciences

There are many potential causes of cancer, from food and the environment to trauma and infection. When it comes to genetics, there is one gene mutation that researchers have linked to more than 20% of lung cancers, 40% of colorectal cancers and 90% of pancreatic cancers. The gene in question, KRAS, is one of the most common “oncogenes,” mutated genes that have the potential to cause cancer.