William R Montfort

William R Montfort

Professor, Chemistry and Biochemistry-Sci
Professor, Molecular and Cellular Biology
Professor, Applied Mathematics - GIDP
Professor, Cancer Biology - GIDP
Professor, Genetics - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 621-1884

Work Summary

We investigate how proteins work in healthy organisms and how they fail in disease. We determine the atomic structures of proteins and the underlying biochemistry that gives rise to protein function. We also develop new proteins as drug targets for treating cancer and cardiovascular disease.

Research Interest

William Montfort, PhD, determines the atomic structures of proteins and seeks to understand how protein structure gives rise to protein function – both in vitro and in living cells. At their heart, the problems have a fundamental structure-function question, but also address questions of importance to human health. Approaches include X-ray crystallography, rapid kinetic measurements, spectroscopy, theory, protein expression, drug discovery, molecular genetics and related techniques.Dr. Montfort is particularly interested in nitric oxide signaling mechanisms. Nitric oxide (NO) is a small reactive molecule produced by all higher organisms for the regulation of an immensely varied physiology, including blood pressure regulation, memory formation, tissue development and programmed cell death. He is interested in two NO signaling mechanisms: binding of NO to heme and the nitrosylation (nitrosation) of cysteines. NO, produced by NO synthase, binds to soluble guanylate cyclase (sGC) at a ferrous heme center, either in the same cell or in nearby cells. Binding leads to conformational changes in heme and protein, and to induction of the protein’s catalytic function and the production cGMP. NO can also react with cysteine residues in proteins, giving rise to S-nitroso (SNO) groups that can alter protein function. He continues to study the mechanistic details surrounding cGMP and SNO production, and the signaling consequences of their formation.For reversible Fe-NO chemistry, Dr. Montfort is studying soluble guanylate cyclase and the nitrophorins, a family of NO transport proteins from blood-sucking insects. Our crystal structures of nitrophorin 4 extend to resolutions beyond 0.9 angstroms, allowing us to view hydrogens, multiple residue conformations and subtle changes in heme deformation. For reversible SNO chemistry, he is studying thioredoxin, glutathione S-nitroso reductase (GSNOR) and also sGC. For regulation in the cell, Dr. Montfort and his group have constructed a model cell system based on a human fibrosarcoma called HT-1080, where sGC, NO synthase, thioredoxin and GSNOR can be manipulated in a functional cellular environment. With these tools, they are exploring the molecular details of NO signaling and whole-cell physiology, and undertaking a program of drug discovery for NO-dependent diseases. Keywords: Structural Biology, Drug Discovery, Cancer, Cardiovascular Disease

Publications

Molnar, I., Xu, Y., Zhou, T., Zhou, Z., Su, S., Roberts, S. A., Montfort, W. R., Zeng, J., Chen, M., Zhang, W., Lin, M., Zhan, J., & Molnar, I. -. (2013). Rational reprogramming of fungal polyketide first-ring cyclization. Proceedings of the National Academy of Sciences of the United States of America, 110(14).

Resorcylic acid lactones and dihydroxyphenylacetic acid lactones represent important pharmacophores with heat shock response and immune system modulatory activities. The biosynthesis of these fungal polyketides involves a pair of collaborating iterative polyketide synthases (iPKSs): a highly reducing iPKS with product that is further elaborated by a nonreducing iPKS (nrPKS) to yield a 1,3-benzenediol moiety bridged by a macrolactone. Biosynthesis of unreduced polyketides requires the sequestration and programmed cyclization of highly reactive poly-β-ketoacyl intermediates to channel these uncommitted, pluripotent substrates to defined subsets of the polyketide structural space. Catalyzed by product template (PT) domains of the fungal nrPKSs and discrete aromatase/cyclase enzymes in bacteria, regiospecific first-ring aldol cyclizations result in characteristically different polyketide folding modes. However, a few fungal polyketides, including the dihydroxyphenylacetic acid lactone dehydrocurvularin, derive from a folding event that is analogous to the bacterial folding mode. The structural basis of such a drastic difference in the way a PT domain acts has not been investigated until now. We report here that the fungal vs. bacterial folding mode difference is portable on creating hybrid enzymes, and we structurally characterize the resulting unnatural products. Using structure-guided active site engineering, we unravel structural contributions to regiospecific aldol condensations and show that reshaping the cyclization chamber of a PT domain by only three selected point mutations is sufficient to reprogram the dehydrocurvularin nrPKS to produce polyketides with a fungal fold. Such rational control of first-ring cyclizations will facilitate efforts to the engineered biosynthesis of novel chemical diversity from natural unreduced polyketides.

Cheng, M., Brookes, J. F., Montfort, W. R., & Khalil, M. (2013). pH-dependent picosecond structural dynamics in the distal pocket of nitrophorin 4 investigated by 2D IR spectroscopy. The journal of physical chemistry. B, 117(49), 15804-11.

Nitrophorin 4 (NP4) belongs to a family of pH-sensitive, nitric oxide (NO) transporter proteins that undergo a large structural change from a closed to an open conformation at high pH to allow for NO delivery. Measuring the pH-dependent structural dynamics in NP4-NO around the ligand binding site is crucial for developing a mechanistic understanding of NO binding and release. In this study, we use coherent two-dimensional infrared (2D IR) spectroscopy to measure picosecond structural dynamics sampled by the nitrosyl stretch in NP4-NO as a function of pH at room temperature. Our results show that both the closed and open conformers of the protein are present at low (pD 5.1) and high (pD 7.9) pH conditions. The closed and open conformers are characterized by two frequencies of the nitrosyl stretching vibration labeled A0 and A1, respectively. Analysis of the 2D IR line shapes reveals that at pD 5.1, the closed conformer experiences structural fluctuations arising from solvation dynamics on a ∼3 ps time scale. At pD 7.9, both the open and closed conformers exhibit fluctuations on a ∼1 ps time scale. At both pD conditions, the closed conformers maintain a static distribution of structures within the experimental time window of 100 ps. This is in contrast to the open conformer, which is able to interconvert among its substates on a ∼100 ps time scale. Our results directly measure the time scales of solvation dynamics in the distal pocket, the flexibility of the open conformation at high pH, and the rigidity of the closed conformers at both pH conditions. We discuss how the pH-dependent equilibrium structural fluctuations of the nitrosyl ligand measured in this study are related to the uptake and delivery of nitric oxide in NP4.

Purohit, R., Weichsel, A., & Montfort, W. R. (2013). Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase. Protein science : a publication of the Protein Society, 22(10), 1439-44.

Soluble guanylate cyclase (sGC) is a heterodimeric heme protein of ≈ 150 kDa and the primary nitric oxide receptor. Binding of NO stimulates cyclase activity, leading to regulation of cardiovascular physiology and providing attractive opportunities for drug discovery. How sGC is stimulated and where candidate drugs bind remains unknown. The α and β sGC chains are each composed of Heme-Nitric Oxide Oxygen (H-NOX), Per-ARNT-Sim (PAS), coiled-coil and cyclase domains. Here, we present the crystal structure of the α1 PAS domain to 1.8 Å resolution. The structure reveals the binding surfaces of importance to heterodimer function, particularly with respect to regulating NO binding to heme in the β1 H-NOX domain. It also reveals a small internal cavity that may serve to bind ligands or participate in signal transduction.

Sarkar, A., Dai, Y., Haque, M. M., Seeger, F., Ghosh, A., Garcin, E. D., Montfort, W. R., Hazen, S. L., Misra, S., & Stuehr, D. J. (2015). Heat Shock Protein 90 Associates with the Per-Arnt-Sim Domain of Heme-free Soluble Guanylate Cyclase: IMplications for Enzyme Maturation. The Journal of biological chemistry, 290(35), 21615-28.

Heat shock protein 90 (hsp90) drives heme insertion into the β1 subunit of soluble guanylate cyclase (sGC) β1, which enables it to associate with a partner sGCα1 subunit and mature into a nitric oxide (NO)-responsive active form. We utilized fluorescence polarization measurements and hydrogen-deuterium exchange mass spectrometry to define molecular interactions between the specific human isoforms hsp90β and apo-sGCβ1. hsp90β and its isolated M domain, but not its isolated N and C domains, bind with low micromolar affinity to a heme-free, truncated version of sGCβ1 (sGCβ1(1-359)-H105F). Surprisingly, hsp90β and its M domain bound to the Per-Arnt-Sim (PAS) domain of apo-sGC-β1(1-359), which lies adjacent to its heme-binding (H-NOX) domain. The interaction specifically involved solvent-exposed regions in the hsp90β M domain that are largely distinct from sites utilized by other hsp90 clients. The interaction strongly protected two regions of the sGCβ1 PAS domain and caused local structural relaxation in other regions, including a PAS dimerization interface and a segment in the H-NOX domain. Our results suggest a means by which the hsp90β interaction could prevent apo-sGCβ1 from associating with its partner sGCα1 subunit while enabling structural changes to assist heme insertion into the H-NOX domain. This mechanism would parallel that in other clients like the aryl hydrocarbon receptor and HIF1α, which also interact with hsp90 through their PAS domains to control protein partner and small ligand binding interactions.

Berry, R. E., Yang, F., Shokhireva, T. K., Amoia, A. M., Garrett, S. A., Goren, A. M., Korte, S. R., Zhang, H., Weichsel, A., Montfort, W. R., & Walker, F. A. (2015). Dimerization of nitrophorin 4 at low pH and comparison to the K1A mutant of nitrophorin 1. Biochemistry, 54(2), 208-20.

Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer-dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and (1)H{(15)N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The "closed loop" form of the A-B and G-H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer.