Bernard W Futscher

Bernard W Futscher

Assistant Research Scientist, Cancer Center Division
Associate Professor, BIO5 Institute
Investigator, Center for Toxicology
Professor, Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Primary Department
Department Affiliations
Contact
(520) 626-4646

Work Summary

Bernard Futscher's lab is studying the molecular origins of human cancer. Understanding epigenetic dysfunction in human cancer has been Dr. Futscher's primary research focus since establishing his own independent laboratory. This epigenetic research has moved into the area of noncoding RNAs and their potential role in cancer cell immortality.

Research Interest

Bernard Futscher, PhD, and his lab focus on the molecular origins of human cancer. More specifically, the lab group has 3 inter-related research objectives based on the underlying concept that developing an in-depth understanding of epigenetic mechanismsresponsible for governing cell fate will allow for the development of more effective strategies for the prevention, treatment, and cure of cancer. First, they wish to identify which epigenetic mechanisms participate in the transcriptional control of genes important to growth and differentiation. Second, they seek to determine how these epigenetic mechanisms, and therefore epigenetic homeostasis, become compromised during oncogenesis. Third, using a new and more complete understanding of epigenetic control of the genome, Dr. Futscher and his team are developing rational new therapeutic strategies that seek to repair these defects in the cancer cell and transcriptionally reprogram the malignant cancer cell to a benign state. To reach their objectives, a variety of in vitro models of cancer have been developed to address emerging hypotheses that are inferred from the literature in basic and clinical science as well as our own data. Results from these in vitro studies are then translated to the clinical situation to determine their meaning in the actual clinical face of the disease. Similarly, they attempt to take information obtained from the genome-wide assessment of clinical specimens in order to help guide our thinking and develop new hypotheses that can be tested experimentally in our in vitro models.

Publications

Pieper, R. O., Futscher, B. W., Dong, Q., & Erickson, L. C. (1991). Effects of streptozotocin/bis-chloroethylnitrosourea combination therapy on O6-methylguanine DNA methyltransferase activity and mRNA levels in HT-29 cells in vitro. Cancer Research, 51(6), 1581-1585.

PMID: 1825618;Abstract:

Treatment of chloroethyInitrosourea-resistent cells with streptozotocin (STZ) prior to bis-chloroethyInitrosourea (BCNU) exposure has been shown to result in a depletion of O6-methylguanine DNA methyltransferase (MGMT) activity, increased BCNU-induced interstrand cross-linking, and a 2-3 log enhancement of BCNU cytotoxicity in vitro. The current study was undertaken to define the kinetics of repletion of MGMT activity following the STZ/BCNU combination and to assess at the molecular level the effects of the combination on MGMT mRNA expression. Results demonstrate that MGMT activity can be depleted by > 90% relative to untreated controls using an optimized STZ/BCNU combination regimen and that > 50% depletion can be maintained for at least 24 h. This depletion appears to be independent of effects at the mRNA level because neither STZ alone nor the STZ/BCNU combination significantly altered steady state levels of MGMT mRNA. Cytotoxicity studies are consistent with MGMT repletion data and demonstrate that, as the interval between STZ and BCNU exposures increases, the degree of enhanced cytotoxicity induced by the combination relative to BCNU alone decreases. These results suggest that the enhanced cytotoxicity induced by the STZ/BCNU combination over BCNU treatment alone is favored by both the lack of induction of expression of MGMT mRNA and by slow reappearance of MGMT activity.

Radhakrishnan, V. M., Jensen, T. J., Cui, H., Futscher, B. W., & Martinez, J. D. (2011). Hypomethylation of the 14-3-3σ promoter leads to increased expression in non-small cell lung cancer. Genes Chromosomes and Cancer, 50(10), 830-836.

PMID: 21755566;PMCID: PMC3155660;Abstract:

The 14-3-3 proteins are a set of seven highly conserved proteins that have recently been implicated in having a role in human tumorigenesis. However, the mechanism by which 14-3-3 proteins may act in this capacity is not well understood. In this study, we examined the expression of one of the 14-3-3 family members, 14-3-3σ, since it was shown previously to be aberrantly altered in human tumors. Using quantitative rtPCR and immunohistochemistry, we found that the expression levels of 14-3-3σ were elevated in the majority of human non-small cell lung cancers (NSCLC) we examined. Surprisingly, we found that the 14-3-3σ gene was hypomethylated in lung tumors relative to normal lung tissue suggesting that decreased DNA methylation resulted in increased expression of 14-3-3σ in NSCLC. We also determined the gene copy number for 14-3-3σ in tumor samples and found no significant correlation with elevated mRNA expression. And also no mutations were found in 14-3-3σ gene. Overall, our data suggest that misregulated expression of 14-3-3σ gene may be due to altered methylation status. © 2011 Wiley-Liss, Inc.

Futscher, B. W., Abbaszadegan, M. R., Domann, F., & Dalton, W. S. (1994). Analysis of MRP mRNA in mitoxantrone-selected, multidrug-resistant human tumor cells. Biochemical Pharmacology, 47(9), 1601-1606.

PMID: 8185674;Abstract:

MRP, a gene recently isolated from a non-P-glycoprotein-mediated multidrug-resistant small cell lung cancer line, is a candidate multidrug-resistance gene. Mitoxantrone, an anthracenedione antitumor agent, frequently selects for non-P-glycoprotein-mediated multidrug resistance in in vitro models. To determine whether mitoxantrone-selected multidrug resistance wasdue to overexpression of MRP, we examined the expression of MRP in four mitoxantrone-selected, multidrug-resistant human tumor cell lines, using a reverse transcriptase/polymerase chain reaction assay. Results from these experiments suggest that overexpression of MRP does not appear to play a primary role in mitoxantrone-selected multidrug resistance in these cell lines, and that other novel drug-resistance mechanisms are likely. © 1994.

Nokes, B. T., Cunliffe, H. E., LaFleur, B., Mount, D. W., Livingston, R. B., Futscher, B. W., & Lang, J. E. (2013). In vitro assessment of the inflammatory breast cancer cell line SUM 149: Discovery of 2 single nucleotidepolymorphisms in the Rnase L gene. Journal of Cancer, 4(2), 104-116.

PMID: 23386909;PMCID: PMC3563072;Abstract:

Background: Inflammatory breast cancer (IBC) is a rare, highly aggressive form of breast cancer. The mechanism of IBC carcinogenesis remains unknown. We sought to evaluate potential genetic risk factors for IBC and whether or not the IBC cell lines SUM149 and SUM190 demonstrated evidence of viral infection. Methods: We performed single nucleotide polymorphism (SNP) genotyping for 2 variants of the ribonuclease (RNase) L gene that have been correlated with the risk of prostate cancer due to a possible viral etiology. We evaluated dose-response to treatment with interferon- alpha (IFN-a); and assayed for evidence of the putative human mammary tumor virus (HMTV, which has been implicated in IBC) in SUM149 cells. A bioinformatic analysis was performed to evaluate expression of RNase L in IBC and non-IBC. Results: 2 of 2 IBC cell lines were homozygous for RNase L common missense variants 462 and 541; whereas 2 of 10 non-IBC cell lines were homozygous positive for the 462 variant (p= 0.09) and 0 of 10 non-IBC cell lines were homozygous positive for the 541 variant (p = 0.015). Our real-time polymerase chain reaction (RT-PCR) and Southern blot analysis for sequences of HMTV revealed no evidence of the putative viral genome. Conclusion: We discovered 2 SNPs in the RNase L gene that were homozygously present in IBC cell lines. The 462 variant was absent in non-IBC lines. Our discovery of these SNPs present in IBC cell lines suggests a possible biomarker for risk of IBC. We found no evidence of HMTV in SUM149 cells. A query of a panel of human IBC and non-IBC samples showed no difference in RNase L expression. Further studies of the RNase L 462 and 541 variants in IBC tissues are warranted to validate our in vitro findings. ©Ivyspring International Publisher.

Abbaszadegan, M. R., Cress, A. E., Futscher, B. W., Bellamy, W. T., & Dalton, W. S. (1996). Evidence for cytoplasmic P-glycoprotein location associated with increased multidrug resistance and resistance to chemosensitizers. Cancer Research, 56(23), 5435-5442.

PMID: 8968098;Abstract:

A new human myeloma cell line, 8226/MDR10V, was selected from a P- glycoprotein-positive cell line, 8226/Dox40, in the continuous presence of doxorubicin and verapamil. MDR10V cells are 13-fold more resistant to doxorubicin and 4-fold more resistant to vincristine than the parent cell line, Dox40. Chemosensitizers are also less effective in reversing resistance in the MDR10V compared to the Dox40 cells. Despite higher resistance to cytotoxic agents, MDR10V expresses 40% less P-glycoprotein in the plasma membrane compared to Dox40; however, total cellular P- glycoprotein is the same in both cell lines. Confocal immunofluorescence microscopy shows 2.5-fold more P-glycoprotein in the cytoplasm of MDR10V cells as compared to Dox40 cells. The cytoplasmic location of P- glycoprotein in the MDR10V cells is associated with a redistribution of doxorubicin. In Dox40 cells, doxorubicin is concentrated in the nucleus, whereas in MDR10V cells, 90% of doxorubicin is found in the cytoplasm. In the presence of equivalent intracellular doxorubicin, there was a decrease in DNA-protein crosslinks in the MDR10V cell line compared to the Dox40 cell line. This finding is in agreement with the intracellular doxorubicin fluorescence studies showing less doxorubicin in the nuclei of MDR10V cells compared to Dox40 cells. Verapamil is less effective in increasing doxorubicin accumulation in the nuclei of MDR10V cells compared to Dox40 cells. Processing of P-glycoprotein from the endoplasmic reticulum to the medial Golgi was identical between the two cell lines as determined by endoglycosidase H sensitivity of newly sensitized P-glycoprotein. No mutations were found in MDR1 cDNA from MDR10V cells compared to Dox40 cells. These results suggest that resistance to chemosensitizing agents plus cytotoxic drugs is associated with a redistribution of P-glycoprotein from the plasma membrane to the cytoplasm, which in turn reduces the amount of cytotoxic drug reaching the nucleus.