Bernard W Futscher

Bernard W Futscher

Assistant Research Scientist, Cancer Center Division
Associate Professor, BIO5 Institute
Investigator, Center for Toxicology
Professor, Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Primary Department
Department Affiliations
Contact
(520) 626-4646

Work Summary

Bernard Futscher's lab is studying the molecular origins of human cancer. Understanding epigenetic dysfunction in human cancer has been Dr. Futscher's primary research focus since establishing his own independent laboratory. This epigenetic research has moved into the area of noncoding RNAs and their potential role in cancer cell immortality.

Research Interest

Bernard Futscher, PhD, and his lab focus on the molecular origins of human cancer. More specifically, the lab group has 3 inter-related research objectives based on the underlying concept that developing an in-depth understanding of epigenetic mechanismsresponsible for governing cell fate will allow for the development of more effective strategies for the prevention, treatment, and cure of cancer. First, they wish to identify which epigenetic mechanisms participate in the transcriptional control of genes important to growth and differentiation. Second, they seek to determine how these epigenetic mechanisms, and therefore epigenetic homeostasis, become compromised during oncogenesis. Third, using a new and more complete understanding of epigenetic control of the genome, Dr. Futscher and his team are developing rational new therapeutic strategies that seek to repair these defects in the cancer cell and transcriptionally reprogram the malignant cancer cell to a benign state. To reach their objectives, a variety of in vitro models of cancer have been developed to address emerging hypotheses that are inferred from the literature in basic and clinical science as well as our own data. Results from these in vitro studies are then translated to the clinical situation to determine their meaning in the actual clinical face of the disease. Similarly, they attempt to take information obtained from the genome-wide assessment of clinical specimens in order to help guide our thinking and develop new hypotheses that can be tested experimentally in our in vitro models.

Publications

Costello, J. F., Futscher, B. W., Kroes, R. A., & Pieper, R. O. (1994). Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Molecular and Cellular Biology, 14(10), 6515-6521.

PMID: 7523853;PMCID: PMC359181;Abstract:

There is considerable interest in identifying factors responsible for expression of the O-6-methylguanine DNA methyltransferase (MGMT) gene, as MGMT is a major determinant in the response of glioma cells to the chemotherapeutic agent 1,3 bis(2-chloroethyl)-1-nitrosourea. Recently we have shown that MGMT expression is correlated in a direct, graded fashion with methylation in the body of the MGMT gene and in an inverse, graded fashion with promoter methylation in human glioma cell lines. To determine if promoter methylation is an important component of MGMT expression, this study addressed the complex interactions between methylation, chromatin structure, and in vivo transcription factor occupancy in the MGMT promoter of glioma cell lines with different levels of MGMT expression. Our results show that the basal promoter in MGMT-expressing glioma cell lines, which is 100% unmethylated, was very accessible to restriction enzymes at all sites tested, suggesting that this region may be nucleosome free. The basal promoter in glioma cells with minimal MGMT expression, however, which is 75% unmethylated, was much less accessible, and the basal promoter in nonexpressing cells, which is 50% unmethylated, was entirely inaccessible to restriction enzymes. Despite the presence of the relevant transcription factors in all cell lines examined, in vivo footprinting showed DNA-protein interactions at six Sp1 binding sites and one novel binding site in MGMT-expressing cell lines but no such interactions in nonexpressors. We conclude that in contrast to findings of previous in vitro studies, Sp1 is an important component of MGMT transcription. These correlations also strongly suggest that methylation and chromatin structure, by determining whether Sp1 and other transcription factors can access the MGMT promoter, set the transcriptional state of the MGMT gene.

Jensen, T. J., Wozniak, R. J., Eblin, K. E., Wnek, S. M., Gandolfi, A. J., & Futscher, B. W. (2009). Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation. Toxicology and Applied Pharmacology, 235(1), 39-46.

PMID: 19061910;Abstract:

Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation. © 2008 Elsevier Inc. All rights reserved.

Pike, B. L., Groshen, S., Hsu, Y., Shai, R. M., Wang, X., Holtan, N., Futscher, B. W., & Hacia, J. G. (2006). Comparisons of PCR-based genome amplification systems using CpG island microarrays. Human Mutation, 27(6), 589-596.

PMID: 16652338;Abstract:

The characterization of complex DNA libraries by high-throughput sequencing technologies provides a powerful approach toward finding mutations and genetic variation in the human genome. However, the value of these analyses is highly dependent upon the quality of the DNA libraries themselves. For example, the sequence composition of libraries made using PCR-based procedures can be skewed due to biases in the amplification efficiency of individual library members. Here, we used CpG island microarrays to evaluate the biases incurred in PCR-based genome amplification using three different DNA polymerase mixtures designed to efficiently amplify problematic sequence tracts. Based on hybridization properties of dye-labeled DNA libraries to these microarrays, we quantified the overall and specific trends in the PCR efficiency of more than 1,400 sequences with high GC-content, which generally amplify with low efficiency using conventional PCR protocols. Overall, all three DNA polymerase mixtures produced libraries that show substantial increases in the representation of CpG island segments that poorly amplify with Taq DNA polymerase. However, the effects of these DNA polymerases were quite specific since they did not alter the relative representation of segments that efficiently amplify with Taq DNA polymerase. Furthermore, we demonstrate that DNA microarrays provide a robust platform for rapidly evaluating the ability of different PCR systems to amplify difficult genomic regions targeted for mutational, resequencing, and genotyping analyses.

Rice, J. C., & Futscher, B. W. (2000). Transcriptional repression of BRCA1 by aberrant cytosine methylation, histone hypoacetylation and chromatin condensation of the BRCA1 promoter. Nucleic Acids Research, 28(17), 3233-3239.

PMID: 10954590;PMCID: PMC110706;Abstract:

BRCA1 expression is repressed by aberrant cytosine methylation in sporadic breast cancer. We hypothesized that aberrant cytosine methylation of the BRCA1 promoter was associated with the transcriptionally repressive effects of histone hypoacetylation and chromatin condensation. To address this question, we developed an in vitro model of study using normal cells and sporadic breast cancer cells with known levels of BRCA1 transcript to produce a 1.4 kb 5-methylcytosine map of the BRCA1 5' CpG island. While all cell types were densely methylated upstream of -728 relative to BRCA1 transcription start, all normal and BRCA1 expressing cells were non-methylated downstream of -728 suggesting that this region contains the functional BRCA1 5' regulatory region. In contrast, the non-BRCA1 expressing UACC3199 cells were completely methylated at all 75 CpGs. Chromatin immunoprecipitations showed that the UACC3199 cells were hypoacetylated at both histones H3 and H4 in the BRCA1 promoter compared to non-methylated BRCA1 expressing cells. The chromatin of the methylated UACC3199 BRCA1 promoter was inaccessible to DNA-protein interactions. These data indicate that the epigenetic effects of aberrant cytosine methylation, histone hypoacetylation and chromatin condensation act together in a discrete region of the BRCA1 5' CpG island to repress BRCA1 transcription in sporadic breast cancer.

Futscher, B. W., Campbell, K., & Dalton, W. S. (1992). Collateral sensitivity to nitrosoureas in multidrug-resistant cells selected with verapamil. Cancer Research, 52(18), 5013-5017.

PMID: 1387586;Abstract:

We have examined the effects of the nitrosoureas, streptozotocin (STZ) and 1,3-bis(chloroethyl)-1-nitrosourea (BCNU), on a human multiple myeloma cell line, RPMI 8226, and its drug-resistant variants. Cell lines selected for doxorubicin (DOX) resistance alone displayed a STZ and BCNU cytotoxicity profile similar to that of the parent cell line. In contrast, two of the drug-resistant variants selected with DOX plus verapamil, an agent which inhibits P-glycoprotein-mediated multidrug resistance, displayed a collateral sensitivity to STZ and BCNU. Verapamil was included in the selection protocol because it has been shown to inhibit the P-glycoprotein-mediated multidrug resistance phenotype and is now in clinical trials as a chemosensitizing agent. The collateral sensitivity to these nitrosoureas seen in the DOX plus verapamil-selected cell lines is due to the functional loss of a DNA repair molecule, O6-Methylguanine DNA methyltransferase (MGMT). The functional loss of MGMT is secondary to the loss of MGMT gene expression. The loss of MGMT gene expression is not due to loss or gross rearrangement of the MGMT-coding region. If this selection pressure applied in vitro reflects the in vivo situation, then new chemotherapeutic strategies may be devised to exploit this phenomenon. These cell lines will serve as useful models for delineating mechanisms which govern MGMT expression.