Carol C Gregorio

Carol C Gregorio

Department Head, Cellular and Molecular Medicine
Director, Molecular Cardiovascular Research Program
Professor, Cellular and Molecular Medicine
Professor, Molecular and Cellular Biology
Co-Director, Sarver Heart Center
Professor, BIO5 Institute
Primary Department
Contact
(520) 626-8113

Work Summary

The research in my laboratory is focused on identifying the components and molecular mechanisms regulating actin architecture in cardiac and skeletal muscle during normal development and disease. Control of actin filament lengths and dynamics is important for cell motility and architecture and is regulated in part by capping proteins that block elongation and depolymerization at both the fast-growing (barbed) and slow-growing (pointed) ends of the filaments.

Research Interest

Carol Gregorio, PhD, performs research in her lab that is focused on identifying the components and molecular mechanisms regulating actin architecture in cardiac and skeletal muscle during normal development and disease. Control of actin filament lengths and dynamics is important for cell motility and architecture and is regulated in part by capping proteins that block elongation and depolymerization at both the fast-growing (barbed) and slow-growing (pointed) ends of the filaments. Striated muscle is an ideal model system to test for the functional properties of various actin regulatory proteins due to the precise organization and polarity of cytoskeletal components within repeating sarcomeric units (for example, the ~1 mm long actin filaments are easily resolved by light microscopy). Using this system, she can combine advanced cell biological and biochemical approaches with direct tests of physiological function in live beating muscle cells.The research objectives of the laboratory can be broadly summarized as follows: 1) understanding the cellular mechanisms involved in the assembly, regulation and maintenance of contractile proteins in cardiac muscle in health and disease; 2) deciphering the mechanisms critical for precisely specifying and maintaining the lengths of actin filaments; 3) discovery of novel models of de novo cardiac muscle assembly, with special emphasis on differentiating murine embryonic stem (ES) cells to study all stages of heart muscle development. Actin is an indispensable structural element of cells and is the major component of heart muscle. Changes in actin, caused by genetic mutations, which have been identified in humans, are a frequent cause of several forms of cardiomyopathy. Her lab is determining how genetic defects in this protein affect muscle force generation and muscle contraction, leading to sudden cardiac death.

Publications

Gregorio, C., Bliss, K. T., Chu, M., Jones-Weinert, C. M., & Gregorio, C. C. (2013). Investigating lasp-2 in cell adhesion: new binding partners and roles in motility. Molecular biology of the cell, 24(7).

Focal adhesions are intricate protein complexes that facilitate cell attachment, migration, and cellular communication. Lasp-2 (LIM-nebulette), a member of the nebulin family of actin-binding proteins, is a newly identified component of these complexes. To gain further insights into the functional role of lasp-2, we identified two additional binding partners of lasp-2: the integral focal adhesion proteins vinculin and paxillin. Of interest, the interaction of lasp-2 with its binding partners vinculin and paxillin is significantly reduced in the presence of lasp-1, another nebulin family member. The presence of lasp-2 appears to enhance the interaction of vinculin and paxillin with each other; however, as with the interaction of lasp-2 with vinculin or paxillin, this effect is greatly diminished in the presence of excess lasp-1. This suggests that the interplay between lasp-2 and lasp-1 could be an adhesion regulatory mechanism. Lasp-2's potential role in metastasis is revealed, as overexpression of lasp-2 in either SW620 or PC-3B1 cells-metastatic cancer cell lines-increases cell migration but impedes cell invasion, suggesting that the enhanced interaction of vinculin and paxillin may functionally destabilize focal adhesion composition. Taken together, these data suggest that lasp-2 has an important role in coordinating and regulating the composition and dynamics of focal adhesions.

Gregorio, C., Zarnescu, D. C., & Gregorio, C. C. (2013). Fragile hearts: New insights into translational control in cardiac muscle. Trends in cardiovascular medicine, 23(8).

Current investigations focused on RNA-binding proteins in striated muscle, which provide a scenario whereby muscle function and development are governed by the interplay of post-transcriptional RNA regulation, including transcript localization, splicing, stability, and translational control. New data have recently emerged, linking the RNA-binding protein FXR1 to the translation of key cytoskeletal components such as talin and desmoplakin in heart muscle. These findings, together with a plethora of recent reports implicating RNA-binding proteins and their RNA targets in both basic aspects of muscle development and differentiation as well as heart disease and muscular dystrophies, point to a critical role of RNA-based regulatory mechanisms in muscle biology. Here we focus on FXR1, the striated muscle-specific member of the Fragile X family of RNA-binding proteins and discuss its newly reported cytoskeletal targets as well as potential implications for heart disease.

Gregorio, C., McElhinny, A. S., Schwach, C., Valichnac, M., Mount-Patrick, S., & Gregorio, C. C. (2005). Nebulin regulates the assembly and lengths of the thin filaments in striated muscle. The Journal of cell biology, 170(6).

In many tissues, actin monomers polymerize into actin (thin) filaments of precise lengths. Although the exact mechanisms involved remain unresolved, it is proposed that "molecular rulers" dictate the lengths of the actin filaments. The giant nebulin molecule is a prime candidate for specifying thin filament lengths in striated muscle, but this idea has never been proven. To test this hypothesis, we used RNA interference technology in rat cardiac myocytes. Live cell imaging and triple staining revealed a dramatic elongation of the preexisting thin filaments from their pointed ends upon nebulin knockdown, demonstrating its role in length maintenance; the barbed ends were unaffected. When the thin filaments were depolymerized with latrunculin B, myocytes with decreased nebulin levels reassembled them to unrestricted lengths, demonstrating its importance in length specification. Finally, knockdown of nebulin in skeletal myotubes revealed its involvement in myofibrillogenesis. These data are consistent with nebulin functioning as a thin filament ruler and provide insight into mechanisms dictating macromolecular assembly.

Gregorio, C., Whitman, S. A., Cover, C., Yu, L., Nelson, D. L., Zarnescu, D. C., & Gregorio, C. C. (2011). Desmoplakin and talin2 are novel mRNA targets of fragile X-related protein-1 in cardiac muscle. Circulation research, 109(3).

The proper function of cardiac muscle requires the precise assembly and interactions of numerous cytoskeletal and regulatory proteins into specialized structures that orchestrate contraction and force transmission. Evidence suggests that posttranscriptional regulation is critical for muscle function, but the mechanisms involved remain understudied.