David G Besselsen

David G Besselsen

Veterinary Specialist
Adjunct Associate Professor, Animal and Comparative Biomedical Sciences
Associate Research Scientist, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 626-6702

Research Interest

David Besselsen, DVM, PhD, is the Director of University Animal Care (UAC), the Attending Veterinarian. He is a board-certified veterinary specialist (Diplomate) in the American College of Laboratory Animal Medicine and the American College of Veterinary Pathology, and served as Interim Dean for the College of Veterinary Medicine from 2017-2019. In addition to his administrative and service responsibilities, Dr. Besselsen is actively engaged in research through the provision of comparative pathology support for rodent models and oversight of the gnotobiotic mouse service. He has directed UAC Pathology Services since his arrival in 1995 and has over 80 peer-reviewed publications. UAC Pathology Services provides diagnostic and comparative pathology support for the research animals and research animal facilities at the University of Arizona. Capabilities include hematology, blood chemistry, necropsy, histologic preparation and interpretation, and others.

Publications

Laubitz, D., Harrison, C. A., Midura-Kiela, M. T., Ramalingam, R., Larmonier, C. B., Chase, J. H., Caporaso, J. G., Besselsen, D. G., Ghishan, F. K., & Kiela, P. R. (2016). Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis. PloS one, 11(4), e0152044.

Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community.

Beilke, L. D., Aleksunes, L. M., Holland, R. D., Besselsen, D. G., Beger, R. D., Klaassen, C. D., & Cherrington, N. J. (2009). Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice. Drug metabolism and disposition: the biological fate of chemicals, 37(5), 1035-45.
BIO5 Collaborators
David G Besselsen, Nathan J Cherrington

Pharmacological activation of the constitutive androstane receptor (CAR) protects the liver during cholestasis. The current study evaluates how activation of CAR influences genes involved in bile acid biosynthesis as a mechanism of hepatoprotection during bile acid-induced liver injury. CAR activators phenobarbital (PB) and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or corn oil (CO) were administered to C57BL/6 wild-type (WT) and CAR knockout (CAR-null) mice before and during induction of intrahepatic cholestasis using the secondary bile acid, lithocholic acid (LCA). In LCA-treated WT and all the CAR-null groups (excluding controls), histology revealed severe multifocal necrosis. This pathology was absent in WT mice pretreated with PB and TCPOBOP, indicating CAR-dependent hepatoprotection. Decreases in total hepatic bile acids and hepatic monohydroxy, dihydroxy, and trihydroxy bile acids in PB- and TCPOBOP-pretreated WT mice correlated with hepatoprotection. In comparison, concentrations of monohydroxylated and dihydroxylated bile acids were increased in all the treated CAR-null mice compared with CO controls. Along with several other enzymes (Cyp7b1, Cyp27a1, Cyp39a1), Cyp8b1 expression was increased in hepatoprotected mice, which could be suggestive of a shift in the bile acid biosynthesis pathway toward the formation of less toxic bile acids. In CAR-null mice, these changes in gene expression were not different among treatment groups. These results suggest CAR mediates a shift in bile acid biosynthesis toward the formation of less toxic bile acids, as well as a decrease in hepatic bile acid concentrations. We propose that these combined CAR-mediated effects may contribute to the hepatoprotection observed during LCA-induced liver injury.

Beilke, L. D., Aleksunes, L. M., Olson, E. R., Besselsen, D. G., Klaassen, C. D., Dvorak, K., & Cherrington, N. J. (2009). Decreased apoptosis during CAR-mediated hepatoprotection against lithocholic acid-induced liver injury in mice. Toxicology letters, 188(1), 38-44.
BIO5 Collaborators
David G Besselsen, Nathan J Cherrington

Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic protein that is regulated by the constitutive androstane receptor (CAR). Activation of CAR can protect the liver against bile acid-induced toxicity and it may have a role in cell death via apoptosis by altering expression of Bcl-2 family proteins such as myeloid cell leukemia-1 (Mcl-1). Our aim was to determine if activation of CAR reduces hepatocellular apoptosis during cholestasis as a mechanism of hepatoprotection. CAR(+/+) (WT) and CAR(-/-) (CAR-null) mice were pre-treated with compounds known to activate CAR prior to induction of intrahepatic cholestasis using the secondary bile acid lithocholic acid (LCA). Pre-treatment with the CAR activators phenobarbital (PB) and TCPOBOP (TC), as well as the non-CAR activator pregnenolone 16alpha-carbontrile (PCN), protected against LCA-induced liver injury in WT mice, whereas liver injury was more extensive without CAR (CAR-null). Unexpectedly, expression of anti-apoptotic Mcl-1 and Bcl-x(L) was not increased in hepatoprotected mice. Compared to unprotected groups, apoptosis was decreased in hepatoprotected mice as evidenced by the absence of cleaved caspase 3 (cCasp3). In contrast to the cytoplasmic localization in the injured livers (LCA and oltipraz), Mcl-1 protein was localized in the nucleus of hepatoprotected livers to potentially promote cell survival. This study demonstrates that although apoptosis is reduced in hepatoprotected mice pre-treated with CAR and non-CAR activators; hepatoprotection is not directly a result of CAR-induced Mcl-1 expression.

Besselsen, D. G., Gothard, K. M., Putnam, P. T., Zimmerman, P. E., & Doane, C. J. (2017). Silicon foreign body in the cerebrum of a rhesus macaque (Macaca mulatta). Comparative Medicine.
Udovich, J. A., Besselsen, D. G., & Gmitro, A. F. (2009). Assessment of acridine orange and SYTO 16 for in vivo imaging of the peritoneal tissues in mice. Journal of microscopy, 234(2), 124-9.

The effect of peritoneal injection of acridine orange and SYTO 16 in mice was investigated. Images of peritoneal tissues stained with these dyes and obtained through a confocal micro-endoscope are presented. Seventy-five Balb/c mice were split into five groups and given peritoneal injections of dye or saline. The proportions of negative outcomes in each group were compared using confidence intervals and the Fisher's exact statistical test. A statistically significant increase in adverse events due to dye injection was not observed. These data provide an initial investigation into the safety of acridine orange and SYTO 16 for in vivo imaging.