Gene A Giacomelli

Gene A Giacomelli

Professor, Agricultural-Biosystems Engineering
Professor, Applied BioSciences - GIDP
Professor, Plant Science
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-9566

Work Summary

Gene Giacmomelli's research focus includes controlled environment plant productions systems [greenhouse and growth chamber] research, design, development and applications, with emphases on: crop production systems, nutrient delivery systems, environmental control, mechanization, and labor productivity.

Research Interest

Gene Giacomelli, PhD, is the director of the CEAC, or interdisciplinary education, research and outreach program for greenhouse and other advanced technology systems. Here at the University of Arizona, he teaches Controlled Environment Systems, which is an introduction to the technical aspects of greenhouse design, environmental control, nutrient delivery systems, hydroponic crop production, intensive field production systems, and post-harvest handling and storage of crops. His research interests include controlled environment plant productions systems (greenhouse and growth chamber) research, design, development and applications, with emphases on: crop production systems, nutrient delivery systems, environmental control, mechanization, and labor productivity.

Publications

Giacomelli, G. A., Giniger, M. S., & Krass, A. E. (1985). UTILIZATION OF THE ENERGY BLANKET FOR EVAPORATIVE COOLING OF THE GREENHOUSE.. Paper - American Society of Agricultural Engineers.

Abstract:

The ability to cool greenhouse air is essential in growing many warm weather greenhouse crops. Present methods, such as fan-and-pad cooling are lacking in both the amount of cooling at high humidity and the uniformity of distribution of cooled air within the greenhouse. One method, a wetted overhead energy-saving blanket, was devised and tested. The blanket (open weave, 55% shading) acted as an evaporative cooling surface when wetted by mist nozzles placed in the greenhouse attic above the blanket. Results have shown good uniformity as well as temperature reduction of up to 8 degree C.

Giacomelli, G. A., Villarreal-Guerrero, . F., Kacira, ., , R., Linker, ., Giacomelli, ., & Kubota, C. (2012). Implementation of a Greenhouse Cooling Strategy with Natural Ventilation and Variable Fogging Rates. Transactions of ASABE.
Chao, K., Ting, K. C., & Giacomelli, G. A. (1997). Foundation class library design for global BLSS models. Paper - American Society of Agricultural Engineers, 1.

Abstract:

The successful modeling of Bioregenerative Life Support Systems (BLSS) for deriving answers to system level questions depends mainly on the systems abstraction. ACE_SYS-oriented analysis is performed to identify the essential component modules for the BLSS as well as the interrelationships among them. The object oriented design for the BLSS is performed based on the outcome of the systems analysis. A set of foundation class library and building blocks for the BLSS models have been developed by translating the object classes and relationships developed during the object oriented design.

Giacomelli, G. A., & Studer, H. E. (1980). ORIENTING AND STEMMING MATURE GREEN, FRESH MARKET TOMATOES.. Paper - American Society of Agricultural Engineers.

Abstract:

Mature green fresh market tomatoes have been machine harvested on a commercial scale in California since 1978. The harvesting and handling process results in some damage to the fruit, and the incidence of puncture injury is a function of the percentage of fruits which retain their stems. This paper reports on a study to identify concepts for mechanically stemming the tomato fruits, concepts which, preferably, might be incorporated in the harvesting machine, so that machine productivity could be increased while maintaining or possibly reducing the size of crew required in the field. Parallel rollers were used to study fruit stem orientation and stemming of mature green fresh market tomatoes. Stemming efficiencies of more than 95% were achieved by using a padded, tri-roller assembly with a fruit constraining bracket.

Sauser, B. J., Giacomelli, G. A., & Ling, P. P. (1998). Development of the basis for an automated plant-based environmental control system. SAE Technical Papers.

Abstract:

The primary objective of the investigation was to evaluate the effects of induced perturbations in air temperature on the development of the tomato plant, while correlating a plant feature for use with machine vision non-contact sensing technologies, and allow for eventual integration into a non-invasive plant-based environmental control system. Real-time information of plant growth responses to steady-state and changing air temperature regimes were measured (i.e. dry weight). There was a positive correlation of the profile machine vision images with dry weight. Therefore, machine vision could be used for plant developmental predictions and development of a control system for maintaining plant schedules. © 1998 Society of Automotive Engineers, Inc.