Judith Bronstein

Judith Bronstein

Professor, Ecology and Evolutionary Biology
Professor, Entomology / Insect Science - GIDP
University Distinguished Professor
Professor, BIO5 Institute
Member of the General Faculty
Member of the Graduate Faculty
Primary Department
Contact
(520) 621-3534

Research Interest

Judith L. Bronstein is University Distinguished Professor of Ecology and Evolutionary Biology, with a joint appointment in the Department of Entomology. Dr. Bronstein’s large, active lab focuses on the ecology and evolution of interspecific interactions, particularly on the poorly-understood, mutually beneficial ones (mutualisms). Using a combination of field observations, experiments, and theory, they are examining how population processes, abiotic conditions, and the community context determine net effects of interactions for the fitness of each participant species. Specific conceptual areas of interest include: (i) conflicts of interest between mutualists and their consequences for the maintenance of beneficial outcomes; (ii) the causes and consequences of "cheating" within mutualism; (iii) context-dependent outcomes in both mutualisms and antagonisms; and (iv) anthropogenic threats to mutualisms. In addition, she is Editor-in-Chief of The American Naturalist, a leading international journal in ecology and evolution. An award-winning instructor, Dr. Bronstein teaches at both the undergraduate and graduate levels; she has also run a large training grant administered by BIO5 that places life sciences graduate students in public school classrooms around Tucson. She serves in leadership positions in the College of Science (including chairing the College of Science Promotion and Tenure Committee for 2013), at the University, and at the Arizona-Sonora Desert Museum, where she is a member of the Board of Trustees and Chair of the Science and Conservation Council.

Publications

Bronstein, J. L., Huxman, T., Horvath, B., Farabee, M., & Davidowitz, G. (2009). Reproductive biology of Datura wrightii: the benefits of a herbivorous pollinator.. Annals of botany, 103(9), 1435-1443.

PMID: 19287014;PMCID: PMC2701751;Abstract:

BACKGROUND AND AIMS: A deeper understanding of mutualism can be reached by studying systems with measurable costs and benefits. Most studies of this type focus on an unusual class of obligate, species-specific pollination mutualisms. The interaction between Datura wrightii (Solanaceae) and the hawkmoth Manduca sexta offers similar advantages but greater generality. Adult moths both nectar at and deposit eggs on the same plant; larvae are herbivorous. The antagonistic component of this interaction has been well studied. Here the role of M. sexta as a pollinator of D. wrightii, particularly in the context of this moth's frequent nectaring visits to the bat-pollinated plant Agave palmeri, is documented. METHODS: Hand-pollinations were used to determine breeding system and the reproductive consequences of mixed loads of A. palmeri and D. wrightii pollen. Plants and moths were caged overnight to assess whether nectaring visits led to fruit and seed set. Finally, pollen deposited on field-collected stigmas was identified, with a particular focus on documenting the presence of D. wrightii and A. palmeri grains. KEY RESULTS: Datura wrightii is highly self-compatible, and a visit that deposits either outcross or self pollen almost doubles fruit and seed set compared with unvisited flowers. Manduca sexta transferred enough pollen to produce fruit and seed sets comparable to hand-pollination treatments. Agave palmeri did not interfere with D. wrightii success: in the field, stigmas received almost pure D. wrightii pollen, and hand-addition of large quantities of A. palmeri pollen had no measurable effect on fruit and seed set. CONCLUSIONS: The floral visitation component of the D. wrightii-M. sexta interaction is indeed mutualistic. This finding is essential background to future development of this interaction as a model system for studying mutualism's costs and benefits. It is already proving valuable for dissecting third-species effects on the outcome of mutualism. Results indicate that M. sexta's heavy visitation to A. palmeri has no negative effect on the benefits conferred to D. wrightii. However, it can be predicted to augment M. sexta populations to the point where the costs of the interaction begin to exceed its benefits.

Law, R., Bronstein, J. L., & Ferrière, R. (2001). On mutualists and exploiters: Plant-insect coevolution in pollinating seed-parasite systems. Journal of Theoretical Biology, 212(3), 373-389.

PMID: 11829358;Abstract:

We investigate the coevolution of time of flowering and time of pollinator emergence in an obligate association between a plant and an insect that both pollinates and parasitizes flowers. Numerical analysis shows that the system in general evolves towards a time of flowering different from the time favoured by the abiotic environment. The equilibrium towards which the system evolves is a local fitness maximum (an ESS) with respect to mutational variation in flowering time but, for the insect, it can be a local fitness minimum at which selection on mutational variation in the time of insect emergence is disruptive. A consequence of evolutionary convergence to a fitness minimum is that pollinators having an earlier phenology can coexist with pollinators having a later phenology. Since late emerging insects are more likely to encounter and oviposit within previously pollinated flowers, their effect on the plant is more exploitative, leading them to function as cheaters within the system. Thus, in the long term, pollinators and exploiters are likely to be found in stable coexistence in pollinating seed-parasite systems. © 2001 Academic Press.

Marazzi, B., Conti, E., Sanderson, M. J., McMahon, M. M., & Bronstein, J. -. (2013). Diversity and evolution of a trait mediating ant-plant interactions: Insights from extrafloral nectaries in Senna (Leguminosae). Annals of Botany, 111, 1263–1275.
BIO5 Collaborators
Judith Bronstein, Michelle M Mcmahon
Ness, J. H., & Bronstein, J. L. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions, 6(4), 445-461.

Abstract:

Ants are recognized for their abilities both to engage in mutualistic interactions with diverse taxa, and to invade and dominate habitats outside their native geographic range. Here, we review the effects of invasive ants on three guilds of mutualists: ant-dispersed plants, ant-tended arthropods, and ant-tended plants. We contrast how those three guilds are affected by invasions, how invasive ants differ from native ants in their interactions with those guilds, and how the seven most invasive ant species differ amongst themselves in those interactions. Ant-dispersed plants typically suffer from interactions with invasive ants, a result we attribute to the small size of those ants relative to native seed-dispersing ants. Effects on the ant-tended arthropods and plants were more frequently positive or non-significant, although it is unclear how often these interactions are reciprocally beneficial. For example, invasive ants frequently attack the natural enemies of these prospective mutualists even in the absence of rewards, and may attack those prospective mutualists. Many studies address whether invasive ants provide some benefit to the partner, but few have asked how invasives rank within a hierarchy of prospective mutualists that includes other ant species. Because ant invasions typically result in the extirpation of native ants, this distinction is highly relevant to predicting and managing the effects of such invasions. Interspecific comparisons suggest that invasive ants are poorer partners of ant-dispersed plants than are most other ants, equally effective partners of ant-tended arthropods, and perhaps better partners of ant-tended plants. Last, we note that the invasive ant taxa differ amongst themselves in how they affect these three mutualist guilds, and in how frequently their interactions with prospective mutualists have been studied. The red imported fire ant, Solenopsis invicta, appears particularly likely to disrupt all three mutualistic interactions, relative to the other six invasive species included in this review.

Boyle, W., Conway, C., & Bronstein, J. (2011). Why do some, but not all, tropical birds migrate? A comparative study of diet breadth and fruit preference. Evolutionary Ecology, 25, 219-236.