Leslie Gunatilaka

Leslie Gunatilaka

Professor, Natural Resources and the Environment
Director, Natural Products Center
Professor, Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Professor, Arid Lands Resources Sciences - GIDP
Professor, BIO5 Institute
Contact
(520) 621-9932

Work Summary

Discovery of natural products from plants and their associated microorganisms as potential drugs to treat cancer. Application of medicinal chemistry approach for structure-activity relationship studies and to obtain compounds for preclinical evaluation. Development of alternative agricultural systems for sustainable utilization of natural resources.

Research Interest

Despite many therapeutic successes, cancer remains a major cause of mortality in the US. Natural products (NPs) represent the best source and inspiration for the discovery of drugs and molecular targets. Our aim is to discover effective and non-toxic NP-based anticancer drugs. Working with NCI we have recently discovered a class of plant-derived NPs useful in cancer immunotherapy. The main focus of our current research is to utilize medicinal chemistry approach to obtain their analogues for preclinical evaluation. Leslie Gunatilaka is Professor at the School of Natural Resources and the Environment and Director of the Natural Products Center. He is also Adjunct Professor of Department of Nutritional Sciences, and a member of the Arizona Cancer Center. He is a member of several professional societies, editorial boards, and pharmaceutical company advisory groups. He is a Fellow of the Academy of Sciences for the Developing World (TWAS), Italy, and the National Academy of Sciences, Sri Lanka. Dr. Gunatilaka has over 200 peer-reviewed publications and book chapters and over 150 communications in natural product science to his credit. He is the recipient of the Sri Lankan Presidents’ gold medal for “creating a center of excellence in natural products research at the University of Peradeniya, Sri Lanka” (1987), CaPCURE award for “dedication to ending prostate cancer as a risk for all men and their families” (2000), Research Faculty of the Year Award of the UA College of Agriculture and Life Sciences (2003), the UA Asian American Faculty, Staff and Alumni Association Outstanding Faculty Award (2005), and the UA Leading Edge Researcher Award for Innovative Research (2012). He has delivered over 100 invited lectures worldwide and was the Chief Guest and Plenary Lecturer at the International Herbal Medicine Conference held in Sri Lanka (2005), and the Keynote Speaker and the Guest of Honor at Chemtech-2007, an International Conference organized by the Institute of Chemistry, Ceylon. His current research interests include discovery, identification of protein targets, and structure-activity relationship (SAR) studies of natural product-based drugs to treat cancer, neurodegenerative, and other diseases from plants, and plant- and lichen-associated microorganisms, maximization of chemistry diversity and production of microbial and plant secondary metabolites, and scientific investigation of medicinal plants and herbal supplements. Keywords: Natural Product-Based Drug Discovery, Medicinal Chemistry, Cancer Immunotherapeutic Agents

Publications

Mancang, G. u., Yanke, Y. u., Gunaherath, G. B., Gunatilaka, A., Dapeng, L. i., & Sun, D. (2013). Structure-activity relationship (SAR) of withanolides to inhibit Hsp90 for its activity in pancreatic cancer cells. Investigational New Drugs, 1-7.

Abstract:

Withaferin A (WA), a naturally occurring steroidal lactone, directly binds to Hsp90 and leads to the degradation of Hsp90 client protein. The purpose of this study is to investigate the structure activity relationship (SAR) of withanolides for their inhibition of Hsp90 and anti-proliferative activities in pancreatic cancer cells. In pancreatic cancer Panc-1 cells, withaferin A (WA) and its four analogues withanolide E (WE), 4-hydroxywithanolide E (HWE), 3-aziridinylwithaferin A (AzWA) inhibited cell proliferation with IC50 ranged from 1.0 to 2.8 μM. WA, WE, HWE, and AzWA also induced caspase-3 activity by 21-, 6-, 11- and 15-fold, respectively, in Panc-1 cells, while withaperuvin (WP) did not show any activity. Our data showed that WA, WE, HWE, and AzWA, but not WP, all directly bound to Hsp90 and induced Hsp90 aggregation,hence inhibited Hsp90 chaperone activity to induce degradation of Hsp90 client proteins Akt and Cdk4 through proteasome-dependent pathway in pancreatic cancer cells. However, only WA, HWE and AzWA disrupted Hsp90-Cdc37 complexes but not WE and WP. SAR study suggested that the C-5(6)-epoxy functional group contributes considerably for withanolide to bind to Hsp90, inhibit Hsp90 chaperone activity, and result in Hsp90 client protein depletion. Meanwhile, the hydroxyl group at C-4 of ring A may enhance withanolide to inhibit Hsp90 activity and disrupt Hsp90-Cdc37 interaction. These SAR data provide possible mechanisms of anti-proliferative action of withanolides. © 2013 Springer Science+Business Media New York.

Heltzel, C. E., A., A., G., D., Hofmann, G. A., & Johnson, R. K. (1994). Synthesis and structure-activity relationships of cytotoxic 7-hydroxy sterols. Journal of Natural Products, 57(5), 620-628.

PMID: 8064294;Abstract:

The cytotoxic sterols 1 and 2, previously isolated from Pseudobersama mossambicensis, have been synthesized in nine steps from stigmasterol, together with seven related sterols. Structure-activity relationships of these sterols in cytotoxicity and DNA-damaging assays are discussed.

Gao, S., Xu, Y., Valeriote, F. A., & Gunatilaka, A. A. (2011). Pierreiones A-D, solid tumor selective pyranoisoflavones and other cytotoxic constituents from Antheroporum pierrei. Journal of natural products, 74(4).

Bioassay-guided fractionation of a solid tumor selective extract of the leaves and twigs of Antheroporum pierrei acquired from the U.S. National Cancer Institute extract repository afforded four new pyranoisoflavones, pierreiones A-D (1-4), together with rotenone (5), 12a-hydroxyrotenone (6), and tephrosin (7). The structures of all new compounds were determined on the basis of their spectroscopic data, and the absolute configuration of 1 was assigned with the help of (1)H NMR analysis of its Mosher's ester derivatives. Compounds 1 and 5-7 accounted for the majority of the biological activity in terms of either cytotoxicity and/or selective toxicity to solid tumor cell lines. Pierreiones A (1) and B (2) demonstrated solid tumor selectivity with minimal cytotoxicity, while pierreione C (3) exhibited no activity.

M., G., & A., A. (1983). Studies on terpenoids and steroids. Part 3. Structure and synthesis of a new phenolic D:A-friedo-24-noroleanane triterpenoid, zeylasterone, from Kokoona zeylanica. Journal of the Chemical Society, Perkin Transactions 1, 2845-2850.

Abstract:

Zeylasterone, the first of a novel series of natural phenolic nortriterpenes from Kokoona zeylanica (Celastraceae) and ' kokum soap ' has been shown to be 29-methyl hydrogen 2,3-dihydroxy-6-oxo-D:A-friedo-24-noroleana-1,3, 5(10),7-tetraene-23,29-dioate (3) on the basis of spectroscopic and chemical evidence. Trimethylzeylasterone (8) has been synthesized from pristimerin, a quinone methide present in K. zeylanica and ' kokum soap '. The biosynthetic importance of some triterpenoids of K. zeylanica is discussed.

Xu, Y., Mafezoli, J., Oliveira, M. C., U'Ren, J. M., Arnold, A. E., & Gunatilaka, A. A. (2015). Anteaglonialides A-F and Palmarumycins CE1-CE3 from Anteaglonium sp. FL0768, a Fungal Endophyte of the Spikemoss Selaginella arenicola. Journal of natural products, 78(11), 2738-47.

Anteaglonialides A-F (1-6), bearing a spiro[6-(tetrahydro-7-furanyl)cyclohexane-1,2'-naphtho[1,8-de][1,3]-dioxin]-10-one skeleton, three new spirobisnaphthalenes, palmarumycins CE1-CE3 (7-9), nine known palmarumycin analogues, palmarumycins CP5 (10), CP4a (11), CP3 (12), CP17 (13), CP2 (14), and CP1 (15), CJ-12,371 (16), 4-O-methyl CJ-12,371 (17), and CP4 (18), together with a possible artifact, 4a(5)-anhydropalmarumycin CE2 (8a), and four known metabolites, O-methylherbarin (19), herbarin (20), herbaridine B (21), and hyalopyrone (22), were encountered in a cytotoxic extract of a potato dextrose agar culture of Anteaglonium sp. FL0768, an endophytic fungus of the sand spikemoss, Selaginella arenicola. The planar structures and relative configurations of the new metabolites 1-9 were elucidated by analysis of extensive spectroscopic data, and the absolute configuration of 1 was determined by the modified Mosher's ester method. Application of the modified Mosher's ester method combined with the NOESY data resulted in revision of the absolute configuration previously proposed for 10. Co-occurrence of 1-6 and 7-18 in this fungus led to the proposal that the anteagloniolides may be biogenetically derived from palmarumycins. Among the metabolites encountered, anteaglonialide F (6) and known palmarumycins CP3 (12) and CP1 (15) exhibited strong cytotoxic activity against the human Ewing's sarcoma cell line CHP-100, with IC50 values of 1.4, 0.5, and 1.6 μM, respectively.