Samantha Harris

Samantha Harris

Professor, Cellular and Molecular Medicine
Co-Chair, ABBS Program
Professor, Biomedical Engineering
Professor, Physiological Sciences - GIDP
Professor, Physiology
Member of the Graduate Faculty
Professor, BIO5 Institute
Primary Department
Contact
(520) 621-0291

Work Summary

The long-term goal of research in my lab is to understand the molecular mechanisms of muscle contraction. I am especially interested in how contractile proteins of muscle sarcomeres regulate the force and speed of contraction in the heart. The question is important from both basic science and clinical perspectives because mutations in sarcomere proteins of muscle are a leading cause of hypertrophic cardiomyopathy (HCM), the most common cause of sudden cardiac death in the young and a prevalent cause of heart failure in adults. Myosin binding protein-C (MyBP-C) is a muscle regulatory protein that speeds actomyosin cycling kinetics in response to adrenaline (b-adrenergic stimuli) and is one of the two most commonly affected proteins linked to HCM. Currently, the major research focus in my lab is understanding the mechanisms by which cMyBP-C regulates contractile speed and mechanisms by which mutations in cMyBP-C cause disease.

Research Interest

The long-term goal of research in my lab is to understand the molecular mechanisms of muscle contraction. I am especially interested in how contractile proteins of muscle sarcomeres regulate the force and speed of contraction in the heart. The question is important from both basic science and clinical perspectives because mutations in sarcomere proteins of muscle are a leading cause of hypertrophic cardiomyopathy (HCM), the most common cause of sudden cardiac death in the young and a prevalent cause of heart failure in adults. Myosin binding protein-C (MyBP-C) is a muscle regulatory protein that speeds actomyosin cycling kinetics in response to adrenaline (b-adrenergic stimuli) and is one of the two most commonly affected proteins linked to HCM. Currently, the major research focus in my lab is understanding the mechanisms by which cMyBP-C regulates contractile speed and mechanisms by which mutations in cMyBP-C cause disease. In pursuing these interests I have established a variety of approaches to investigate muscle contraction at molecular, cellular, and whole animal levels. Methods include single molecule atomic force microscopy (AFM), mechanical force measurements in permeabilized muscle cells, in vitro motility assays, biochemical enzyme and binding assays, immunofluorescent imaging, knockout/transgenic animal models and the development of a natural large animal model of HCM.

Publications

van Dijk, S. J., Kooiker, K. B., Mazzalupo, S., Yang, Y., Kostyukova, A. S., Mustacich, D. J., Hoye, E. R., Stern, J. A., Kittleson, M. D., & Harris, S. P. (2016). The A31P missense mutation in cardiac myosin binding protein C alters protein structure but does not cause haploinsufficiency. Archives of biochemistry and biophysics.

Mutations in MYBPC3, the gene encoding cardiac myosin binding protein C (cMyBP-C), are a major cause of hypertrophic cardiomyopathy (HCM). While most mutations encode premature stop codons, missense mutations causing single amino acid substitutions are also common. Here we investigated effects of a single proline for alanine substitution at amino acid 31 (A31P) in the C0 domain of cMyBP-C, which was identified as a natural cause of HCM in cats. Results using recombinant proteins showed that the mutation disrupted C0 structure, altered sensitivity to trypsin digestion, and reduced recognition by an antibody that preferentially recognizes N-terminal domains of cMyBP-C. Western blots detecting A31P cMyBP-C in myocardium of cats heterozygous for the mutation showed a reduced amount of A31P mutant protein relative to wild-type cMyBP-C, but the total amount of cMyBP-C was not different in myocardium from cats with or without the A31P mutation indicating altered rates of synthesis/degradation of A31P cMyBP-C. Also, the mutant A31P cMyBP-C was properly localized in cardiac sarcomeres. These results indicate that reduced protein expression (haploinsufficiency) cannot account for effects of the A31P cMyBP-C mutation and instead suggest that the A31P mutation causes HCM through a poison polypeptide mechanism that disrupts cMyBP-C or myocyte function.

Mun, J. Y., Kensler, R. W., Harris, S. P., & Craig, R. (2016). The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position. Journal of molecular and cellular cardiology, 91, 141-7.

Mutations in cardiac myosin binding protein C (cMyBP-C), a thick filament protein that modulates contraction of the heart, are a leading cause of hypertrophic cardiomyopathy (HCM). Electron microscopy and 3D reconstruction of thin filaments decorated with cMyBP-C N-terminal fragments suggest that one mechanism of this modulation involves the interaction of cMyBP-C's N-terminal domains with thin filaments to enhance their Ca(2+)-sensitivity by displacement of tropomyosin from its blocked (low Ca(2+)) to its closed (high Ca(2+)) position. The extent of this tropomyosin shift is reduced when cMyBP-C N-terminal domains are phosphorylated. In the current study, we have examined L348P, a sequence variant of cMyBP-C first identified in a screen of patients with HCM. In L348P, leucine 348 is replaced by proline in cMyBP-C's regulatory M-domain, resulting in an increase in cMyBP-C's ability to enhance thin filament Ca(2+)-sensitization. Our goal here was to determine the structural basis for this enhancement by carrying out 3D reconstruction of thin filaments decorated with L348P-mutant cMyBP-C. When thin filaments were decorated with wild type N-terminal domains at low Ca(2+), tropomyosin moved from the blocked to the closed position, as found previously. In contrast, the L348P mutant caused a significantly larger tropomyosin shift, to approximately the open position, consistent with its enhancement of Ca(2+)-sensitization. Phosphorylated wild type fragments showed a smaller shift than unphosphorylated fragments, whereas the shift induced by the L348P mutant was not affected by phosphorylation. We conclude that the L348P mutation causes a gain of function by enhancing tropomyosin displacement on the thin filament in a phosphorylation-independent way.

Shaffer, J. F., Razumova, M. V., Tu, A., Regnier, M., & Harris, S. P. (2007). Myosin S2 is not required for effects of myosin binding protein-C on motility. FEBS letters, 581(7), 1501-4.

The unique myosin binding protein-c "motif" near the N-terminus of myosin binding protein-C (MyBP-C) binds myosin S2. Previous studies demonstrated that recombinant proteins containing the motif and flanking regions (e.g., C1C2) affect thin filament movement in motility assays using heavy meromyosin (S1 plus S2) as the molecular motor. To determine if S2 is required for these effects we investigated whether C1C2 affects motility in assays using only myosin S1 as the motor protein. Results demonstrate that effects of C1C2 are comparable in both systems and suggest that the MyBP-C motif affects motility through direct interactions with actin and/or myosin S1.

McNamara, J. W., Li, A., Lal, S., Bos, J. M., Harris, S. P., van der Velden, J., Ackerman, M. J., Cooke, R., & Dos Remedios, C. G. (2017). MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy. PloS one, 12(6), e0180064.

The "super-relaxed state" (SRX) of myosin represents a 'reserve' of motors in the heart. Myosin heads in the SRX are bound to the thick filament and have a very low ATPase rate. Changes in the SRX are likely to modulate cardiac contractility. We previously demonstrated that the SRX is significantly reduced in mouse cardiomyocytes lacking cardiac myosin binding protein-C (cMyBP-C). Here, we report the effect of mutations in the cMyBP-C gene (MYBPC3) using samples from human patients with hypertrophic cardiomyopathy (HCM). Left ventricular (LV) samples from 11 HCM patients were obtained following myectomy surgery to relieve LV outflow tract obstruction. HCM samples were genotyped as either MYBPC3 mutation positive (MYBPC3mut) or negative (HCMsmn) and were compared to eight non-failing donor hearts. Compared to donors, only MYBPC3mut samples display a significantly diminished SRX, characterised by a decrease in both the number of myosin heads in the SRX and the lifetime of ATP turnover. These changes were not observed in HCMsmn samples. There was a positive correlation (p 0.01) between the expression of cMyBP-C and the proportion of myosin heads in the SRX state, suggesting cMyBP-C modulates and maintains the SRX. Phosphorylation of the myosin regulatory light chain in MYBPC3mut samples was significantly decreased compared to the other groups, suggesting a potential mechanism to compensate for the diminished SRX. We conclude that by altering both contractility and sarcomeric energy requirements, a reduced SRX may be an important disease mechanism in patients with MYBPC3 mutations.

Li, R. H., Stern, J. A., Ho, V., Tablin, F., & Harris, S. P. (2016). Platelet Activation and Clopidogrel Effects on ADP-Induced Platelet Activation in Cats with or without the A31P Mutation in MYBPC3. Journal of veterinary internal medicine, 30(5), 1619-1629.

Clopidogrel is commonly prescribed to cats with perceived increased risk of thromboembolic events, but little information exists regarding its antiplatelet effects.