Thomas C Doetschman

Thomas C Doetschman

Specialist, Embryonic Stem Cell Culture
Member of the General Faculty
Primary Department
Contact
(520) 626-4901

Work Summary

I am investigating a human connective tissue disorder in mice. I am also investigating the role of gut bacteria in colon cancer risk in both a mouse model of colon cancer and in humans with colon cancer.

Research Interest

Dr. Thomas Doetschman, PhD, Biochemistry & Biophysics, University of Connecticut, has been involved in cardiovascular research for over a decade through investigations into the cardiovascular roles of the three TGFβ ligands and FGF2 ligand isoforms in genetically engineered mice. These mice have determined that TGFβ2 plays major roles in heart and vascular development and for maintenance of valvular and large vessel integrity in the adult and that both the TGFβ1 and FGF2 are involved in adult heart disease.His work has also demonstrated roles of TGFβ in cancer and immunology. He found that a major function of TGFβ1 is to inhibit autoimmunity and to establish homeostatic balance between immune regulatory and inflammatory cells. He has shown that an imbalance in the latter is critical in the tumor suppressor function of TGFβ in the colon.Dr. Doetschman has also played an important role in the development of the mouse genetic engineering field. He has been responsible for the establishment of 3 mouse genetic engineering facilities, in Cincinnati OH, Singapore and the University of Arizona’s BIO5 Institute. Keywords: "Cancer", "Microbiome", "Mouse Genetic Engineering", "Connective Tissue Disorder"

Publications

Doetschman, T., Gregg, R., Maeda, N., Hooper, M., Melton, D., Thompson, S., & Smithies, O. (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 330(6148), 576-578.
Homer-Bouthiette, C., Doetschman, T., Xiao, L., & Hurley, M. (2014). Knockout of nuclear high molecular weight FGF2 isoforms in mice modulates bone and phosphate homeostasis. Journal of Biological Chemistry, 289(52), 36303-36314.
Boller, K., Kemler, R., Baribault, H., & Doetschman, T. (1987). Differential distribution of cytokeratins after microinjection of anti-cytokeratin monoclonal antibodies. European Journal of Cell Biology, 43(3), 459-468.
Doetschman, T., & Georgieva, T. (2017). Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease. Circulation Research, 120(5), 876-894.

Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases.

Montero, A., Okada, Y., Tomita, M., Ito, M., Tsurukami, H., Nakamura, T., Doetschman, T., Coffin, J., & Hurley, M. (2000). Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. Journal of Clinical Investigation, 105(8), 1085-1093.