Heddwen L Brooks

Heddwen L Brooks

Professor, Physiology
Professor, Medicine
Professor, Biomedical Engineering
Professor, Physiological Sciences - GIDP
Associate Professor, Pharmacology
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-7702

Research Interest

Dr. Brooks is a renal physiologist and has developed microarray technology to address in vivo signaling pathways involved in the hormonal regulation of renal function. Current areas of research in the Brooks Laboratory are focused on importance of sex differences in the onset of postmenopausal hypertension and diabetic kidney disease and identifying new therapies for polycystic kidney disease and lithium-induced nephropathy.

Publications

Zhang, Z., Ferraris, J. D., Brooks, H. L., Brisc, I., & Burg, M. B. (2003). Expression of osmotic stress-related genes in tissues of normal and hyposmotic rats. American journal of physiology. Renal physiology, 285(4), F688-93.

TonEBP is a transcription factor that, when activated by hypertonicity, increases transcription of genes, including those involved in organic osmolyte accumulation. Surprisingly, it is expressed in virtually all tissues, including many never normally exposed to hypertonicity. We measured TonEBP mRNA (real-time PCR) and protein (Western blot analysis) in tissues of control (plasma osmolality 294 +/- 1 mosmol/kgH2O) and hyposmotic (dDAVP infusion plus water loading for 3 days, 241 +/- 2 mosmol/kgH2O) rats to test whether the ubiquitous expression of TonEBP mRNA is osmotically regulated around the normal plasma osmolality. TonEBP protein is reduced by hyposmolality in thymus and liver, but not in brain, and is not detected in heart and skeletal muscle. TonEBP mRNA decreases in brain and liver but is unchanged in other tissues. There are no general changes in mRNA of TonEBP-mediated genes: aldose reductase (AR) does not change in any tissue, betaine transporter (BGT1) decreases only in liver, taurine transporter (TauT) only in brain and thymus, and inositol transporter (SMIT) only in skeletal muscle and liver. Heat shock protein (Hsp)70-1 and Hsp70-2 mRNA increase greatly in most tissues, which cannot be attributed to decreased TonEBP activity. The conclusions are as follows: 1) TonEBP protein or mRNA expression is reduced by hyposmolality in thymus, liver, and brain. 2) TonEBP protein and mRNA expression are differentially regulated in some tissues. 3) Although AR, SMIT, BGT1, and TauT are regulated by TonEBP in renal medullary cells, other sources of regulation may predominate in other tissues. 4) TonEBP abundance and activity are regulated by factors other than tonicity in some tissues.

Brooks, H., Diamond-Stanic, M. K., Romero-Aleshire, M. J., Hoyer, P. B., Greer, K., Hoying, J. B., & Brooks, H. L. (2011). Midkine, a heparin-binding protein, is increased in the diabetic mouse kidney postmenopause. American journal of physiology. Renal physiology, 300(1).

Estrogen is thought to protect against the development of chronic kidney disease, and menopause increases the development and severity of diabetic kidney disease. In this study, we used streptozotocin (STZ) to induce diabetes in the 4-vinylcyclohexene diepoxide (VCD)-treated mouse model of menopause. DNA microarrays were used to identify gene expression changes in the diabetic kidney postmenopause. An ANOVA model, CARMA, was used to isolate the menopause effect between two groups of diabetic mice, diabetic menopausal (STZ/VCD) and diabetic cycling (STZ). In this diabetic study, 8,864 genes of the possible 15,600 genes on the array were included in the ANOVA; 99 genes were identified as demonstrating a >1.5-fold up- or downregulation between the STZ/VCD and STZ groups. We randomly selected genes for confirmation by real-time PCR; midkine (Mdk), immediate early response gene 3 (IEX-1), mitogen-inducible gene 6 (Mig6), and ubiquitin-specific protease 2 (USP2) were significantly increased in the kidneys of STZ/VCD compared with STZ mice. Western blot analysis confirmed that Mdk and IEX-1 protein abundance was significantly increased in the kidney cortex of STZ/VCD compared with STZ mice. In a separate study, DNA microarrays and CARMA analysis were used to identify the effect of menopause on the nondiabetic kidney; VCD-treated mice were compared with cycling mice. Of the possible 15,600 genes on the array, 9,142 genes were included in the ANOVA; 20 genes were identified as demonstrating a >1.5-fold up- or downregulation; histidine decarboxylase and vanin 1 were among the genes identified as differentially expressed in the postmenopausal nondiabetic kidney. These data expand our understanding of how hormone status correlates with the development of diabetic kidney disease and identify several target genes for further studies.

Chen, H., Perez, J. N., Constantopoulos, E., McKee, L., Regan, J., Hoyer, P. B., Brooks, H. L., & Konhilas, J. (2014). A method to study the impact of chemically-induced ovarian failure on exercise capacity and cardiac adaptation in mice. Journal of visualized experiments : JoVE.

The risk of cardiovascular disease (CVD) increases in post-menopausal women, yet, the role of exercise, as a preventative measure for CVD risk in post-menopausal women has not been adequately studied. Accordingly, we investigated the impact of voluntary cage-wheel exercise and forced treadmill exercise on cardiac adaptation in menopausal mice. The most commonly used inducible model for mimicking menopause in women is the ovariectomized (OVX) rodent. However, the OVX model has a few dissimilarities from menopause in humans. In this study, we administered 4-vinylcyclohexene diepoxide (VCD) to female mice, which accelerates ovarian failure as an alternative menopause model to study the impact of exercise in menopausal mice. VCD selectively accelerates the loss of primary and primordial follicles resulting in an endocrine state that closely mimics the natural progression from pre- to peri- to post-menopause in humans. To determine the impact of exercise on exercise capacity and cardiac adaptation in VCD-treated female mice, two methods were used. First, we exposed a group of VCD-treated and untreated mice to a voluntary cage wheel. Second, we used forced treadmill exercise to determine exercise capacity in a separate group VCD-treated and untreated mice measured as a tolerance to exercise intensity and endurance.

Hawkins, B. T., Lundeen, T. F., Norwood, K. M., Brooks, H. L., & Egleton, R. D. (2007). Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia, 50(1), 202-11.

Although diabetes mellitus is associated with peripheral microvascular complications and increased risk of neurological events, the mechanisms by which diabetes disrupts the blood-brain barrier (BBB) are not known. Matrix metalloproteinase (MMP) activity is increased in diabetic patients, is associated with degradation of tight junction proteins, and is a known mediator of BBB compromise. We hypothesise that diabetes leads to compromise of BBB tight junctions via stimulation of MMP activity.

Brooks, H., Brooks, H. L., Gao, Y., Romero-Aleshire, M. J., Cai, Q., & Price, T. J. (2013). Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells. American Journal of Physiology. Renal physiology, 305(8).

Nephrogenic diabetes insipidus (NDI) is the most common renal side effect in patients undergoing lithium therapy for bipolar affective disorders. Approximately 2 million US patients take lithium of whom ∼50% will have altered renal function and develop NDI (2, 37). Lithium-induced NDI is a defect in the urinary concentrating mechanism. Lithium therapy also leads to proliferation and abundant renal cysts (microcysts), commonly in the collecting ducts of the cortico-medullary region. The mTOR pathway integrates nutrient and mitogen signals to control cell proliferation and cell growth (size) via the mTOR Complex 1 (mTORC1). To address our hypothesis that mTOR activation may be responsible for lithium-induced proliferation of collecting ducts, we fed mice lithium chronically and assessed mTORC1 signaling in the renal medulla. We demonstrate that mTOR signaling is activated in the renal collecting ducts of lithium-treated mice; lithium increased the phosphorylation of rS6 (Ser240/Ser244), p-TSC2 (Thr1462), and p-mTOR (Ser2448). Consistent with our hypothesis, treatment with rapamycin, an allosteric inhibitor of mTOR, reversed lithium-induced proliferation of medullary collecting duct cells and reduced levels of p-rS6 and p-mTOR. Medullary levels of p-GSK3β were increased in the renal medullas of lithium-treated mice and remained elevated following rapamycin treatment. However, mTOR inhibition did not improve lithium-induced NDI and did not restore the expression of collecting duct proteins aquaporin-2 or UT-A1.