Katrina M Miranda

Katrina M Miranda

Associate Professor, Chemistry and Biochemistry-Sci
Associate Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-3655

Work Summary

We seek to produce new drugs that harness molecules produced during the natural immune response in order to treat cancer and pain. Such compounds may also provide new treatments for heart failure and alcoholism.

Research Interest

Katrina Miranda, PhD, claims nitric oxide (NO), which is synthesized in the body via enzymatic oxidation of L-arginine, is critical to numerous physiological functions, but also can contribute to the severity of diseases such as cancer or pathophysiological conditions such as stroke. This diversity in the responses to NO biosynthesis is a reflection of the diverse chemistry of NO. For instance, NO can alter the function of enzymes by binding to metal centers. This type of interaction could result in outcomes as disparate as control of blood pressure or death of an invading bacterium. NO can also be readily converted to higher nitrogen oxides such as N2O3 or ONOOH, which have very different chemical and biological properties. The ultimate result will depend upon numerous factors, particularly the location and concentration of NO produced. Therefore, site-specific modulation of NO concentration offers intriguing therapeutic possibilities for an ever expanding list of diseases, including cancer, heart failure and stroke. As a whole, Dr. Miranda is interested in elucidating the fundamental molecular redox chemistry of NO and in developing compounds to deliver or scavenge NO and other nitrogen oxides. These projects are designed to answer questions of potential medical importance through a multi-disciplinary approach, including analytical, synthetic, inorganic and biochemical techniques.The project categories include five major disciplines. First, she will work on the development and utilization of analytical techniques for detection and measurement of NO and other nitrogen oxides as well as the resultant chemistry of these species. Second, she will synthesize potential donors or scavengers of NO and other nitrogen oxides. Third, it’s necessary to describe chemical characterization of these compounds (spectroscopic features, kinetics, mechanisms and profiles of nitrogen oxide release, etc.). Fourth, Dr. Miranda will try to describe the biological characterization of these compounds (assay of effects on biological compounds, mechanisms and pathways, in vitro determination of potential for therapeutic utility, etc.). Fifth, she will identify of potential targets, such as enzymes, for treatment of disease through exposure to nitrogen oxide donors. Keywords: cancer treatment, pain treatment

Publications

Ogawa, R., Pacelli, R., Espey, M. G., Miranda, K. M., Friedman, N., Kim, S., Cox, G., Mitchell, J. B., Wink, D. A., & Russo, A. (2001). Comparison of control of Listeria by nitric oxide redox chemistry from murine macrophages and NO donors: Insights into Listeriocidal activity of oxidative and nitrosative stress. Free Radical Biology and Medicine, 30(3), 268-276.

PMID: 11165873;Abstract:

The physiological function of nitric oxide (NO) in the defense against pathogens is multifaceted. The exact chemistry by which NO combats intracellular pathogens such as Listeria monocytogenes is yet unresolved. We examined the effects of NO exposure, either delivered by NO donors or generated in situ within ANA-1 murine macrophages, on L. monocytogenes growth. Production of NO by the two NONOate compounds PAPA/NO (NH2(C3H6) (N[N(O)NO]C3H7)) and DEA/NO (Na(C2H5)2N[N(O)NO]) resulted in L. monocytogenes cytostasis with minimal cytotoxicity. Reactive oxygen species generated from xanthine oxidase/hypoxanthine were neither bactericidal nor cytostatic and did not alter the action of NO. L. monocytogenes growth was also suppressed upon internalization into ANA-1 murine macrophages primed with interferon-γ (INF-γ) + tumor necrosis factor-α (TNF-α or INF-γ + lipid polysaccharide (LPS). Growth suppression correlated with nitrite formation and nitrosation of 2,3-diaminonaphthalene elicited by stimulated murine macrophages. This nitrosative chemistry was not dependent upon nor mediated by interaction with reactive oxygen species (ROS), but resulted solely from NO and intermediates related to nitrosative stress. The role of nitrosation in controlling L. monocytogenes was further examined by monitoring the effects of exposure to NO on an important virulence factor, Listeriolysin O, which was inhibited under nitrosative conditions. These results suggest that nitrosative stress mediated by macrophages is an important component of the immunological arsenal in controlling L. monocytogenes infections. © 2001 Elsevier Science Inc.

Miranda, K. M., Espey, M. G., & Wink, D. A. (2000). A discussion of the chemistry of oxidative and nitrosative stress in cytotoxicity. Journal of Inorganic Biochemistry, 79(1-4), 237-240.

PMID: 10830872;Abstract:

Nitric oxide (NO) has been shown to be a key bioregulatory agent in a wide variety of biological processes, yet cytotoxic properties have been reported as well. This dichotomy has raised the question of how this potentially toxic species can be involved in so many fundamental physiological processes. We have investigated the effects of NO on a variety of toxic agents and correlated how its chemistry might pertain to the observed biology. The results generate a scheme termed the chemical biology of NO in which the pertinent reactions can be categorized into direct and indirect effects. The former involves the direct reaction of NO with its biological targets generally at low fluxes of NO. Indirect effects are reactions mediated by reactive nitrogen oxide species, such as those generated from the NO/O2 and NO/O2- reactions, which can lead to cellular damage via nitrosation or oxidation of biological components. This report discusses several examples of cytotoxicity involved with these stresses. (C) 2000 Elsevier Science Inc.

Jorolan, J. H., Buttitta, L. A., Cheah, C., & Miranda, K. M. (2015). Comparison of the chemical reactivity of synthetic peroxynitrite with that of the autoxidation products of nitroxyl or its anion. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society, 44, 39-46.

Donors of nitroxyl (HNO) exhibit pharmacological properties that are potentially favorable for treatment of a variety of diseases. To fully evaluate the pharmacological utility of HNO, it is therefore important to understand its chemistry, particularly involvement in deleterious biological reactions. Of particular note is the cytotoxic species formed from HNO autoxidation that is capable of inducing double strand DNA breaks. The identity of this species remains elusive, but a conceivable product is peroxynitrous acid. However, chemical comparison studies have demonstrated that HNO autoxidation leads to a unique reactive nitrogen oxide species to that of synthetic peroxynitrite. Here, we extend the analysis to include a new preparation of peroxynitrite formed via autoxidation of nitroxyl anion (NO(-)). Both peroxynitrite preparations exhibited similar chemical profiles, although autoxidation of NO(-) provided a more reliable sample of peroxynitrite. Furthermore, the observed dissimilarities to the HNO donor Angeli's salt substantiate that HNO autoxidation produces a unique intermediate from peroxynitrite.

Miranda, K. M., Katori, T., L., C., Thomas, L., Ridnour, L. A., McLendon, W. J., Cologna, S. M., Dutton, A. S., Champion, H. C., Mancardi, D., Tocchetti, C. G., Saavedra, J. E., Keefer, L. K., Houk, K. N., Fukuto, J. M., Kass, D. A., Paolocci, N., & Wink, D. A. (2005). Comparison of the NO and HNO donating properties of diazeniumdiolates: Primary amine adducts release HNO in vivo. Journal of Medicinal Chemistry, 48(26), 8220-8228.

PMID: 16366603;Abstract:

Diazeniumdiolates, more commonly referred to as NONOates, have been extremely useful in the investigation of the biological effects of nitric oxide (NO) and related nitrogen oxides. The NONOate Angeli's salt (Na 2N2O3) releases nitroxyl (HNO) under physiological conditions and exhibits unique cardiovascular features (i.e., positive inotropy/lusitropy) that may have relevance for pharmacological treatment of heart failure. In the search for new, organic-based compounds that release HNO, we examined isopropylamine NONOate (IPA/NO; Na[(CH 3)2-CHNH(N(O)NO]), which is an adduct of NO and a primary amine. The chemical and pharmacological properties of IPA/NO were compared to those of Angeli's salt and a NO-producing NONOate, DEA/NO (Na[Et 2NN(O)NO]), which is a secondary amine adduct. Under physiological conditions IPA/NO exhibited all the markers of HNO production (e.g., reductive nitrosylation, thiol reactivity, positive inotropy). These data suggest that primary amine NONOates may be useful as HNO donors in complement to the existing series of secondary amine NONOates, which are well-characterized NO donors. © 2005 American Chemical Society.

Espey, M. G., Miranda, K. M., Thomas, D. D., & Wink, D. A. (2002). Ingress and reactive chemistry of nitroxyl-derived species within human cells. Free Radical Biology and Medicine, 33(6), 827-834.

PMID: 12208370;Abstract:

The mechanisms that control the biological signaling and toxicological properties of the nitrogen oxide species nitroxyl (HNO) are largely unknown. The ingress and intracellular reactivity of nitroxyl-derived species were examined using Angeli's salt (AS), which decomposes initially to HNO and nitrite at physiologic pH. Exposure of 4,5-diaminofluorescein (DAF) to AS resulted in fluorescent product formation only in the presence of molecular oxygen. Kinetic analysis and the lack of signal from a nitric oxide (NO)-sensitive electrode suggested that these processes did not involve conversion of HNO to NO. On an equimolar basis, bolus peroxynitrite (ONOO-) exposure generated only 15% of fluorescent product formation observed from AS decomposition. Moreover, infusion of synthetic ONOO- at a rate comparable to AS decomposition resulted in only 4% of the signal. Quenching of AS-mediated product formation within intact human MCF-7 breast carcinoma cells containing DAF by addition of urate to buffer suggested involvement of an oxidized intermediate formed from reaction between HNO and oxygen. Conversely, intact cells competitively sequestered the HNO-derived species from reaction with DAF in solution. These data show this intermediate to be a long-lived diffusible species. Relative product yield from intracellular DAF was decreased 5- to 8-fold when cells were lysed immediately prior to AS addition, consistent with the partitioning of HNO and/or derived species into the cellular membrane, thereby shielding these reactive intermediates from either hydrolysis or cytoplasmic scavenger pools. These findings establish that oxygen-derived species of nitroxyl can readily penetrate and engage the intracellular milieu of cells and suggest this process to be independent of NO and ONOO- intermediacy. The substantial facilitation of oxygen-dependent nitroxyl chemistry by intact lipid bilayers supports a focusing role for the membrane in modulation of cellular constituents proteins by this unique species.