Xianchun Li

Xianchun Li

Professor, Entomology
Professor, Entomology / Insect Science - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-1749

Work Summary

Xianchun Li's research aims to use genetics to shed light on the defense signaling of plants and the counterdefense of herbivorous insects, which may result in the design of new insecticides for crops like corn, in defense against the corn earworm. Additionally, Dr. Li's research is to define, globally, the regulatory triangle between nuclear receptors (NRs), their ligands, and cytochrome P450s (P450s) in Drosophila melanogaster, and to investigate the molecular mechanisms of Bt and conventional insecticide resistance.

Research Interest

Xianchun Li, PhD, is interested in understanding the physiological, biochemical, molecular and evolutionary bases of fundamental processes in the life history of insects such as embryonic polarity, metamorphosis, developmental commitment, host usage and environmental adaptation. One focus of his research is to elucidate the reciprocal signaling interactions between plants and insects, and the resulted on-going defense (in the case of plants) / counterdefense (in the case of herbivorous insects) phenotypic arm race over ecological time scale, with emphasis on the genetic machinery that percepts and transduces the reciprocal cues into genome and regulate defense / counterdefense phenotypes. Working systems include Helicoverpa zea, the corn earworm, a polyphagous noctuide of economic importance, and Drosophila melanogaster, the fruit fly, a model organism. State of arts and traditional techniques are combining to identify the cues and to uncover the signaling transduction cascade that links environmental cues, gene expression and the resulted defense/counterdefense phenotypes. This research may lead to characterization of genes for designing new insecticides and/or genetically modifying crops. The second focus of Dr. Li’s research is to define, globally, the regulatory triangle between nuclear receptors (NRs), their ligands, and cytochrome P450s (P450s) in Drosophila melanogaster. Nuclear receptors (NRs) constitute a transcription factor superfamily that has evolved to sense and bind endogenous (e.g., hormones) and/or exogenous (e.g., naturally-occurring or synthetic xenobiotics) signal compounds, resulting in differential expression of particular target genes, which underlies a range of fundamental biological processes, including growth, development, reproduction, behavior, host usage, and environmental adaptation. Many of those cue chemicals, namely NR ligands, are synthesized and/or metabolized by members of the P450s gene superfamily, whose expression may be regulated by certain NRs. Bioinformatics analyses as well as systematic functional genomic techniques such as microarray, X-ChIP, mutation and ectopic expression will be combined to define the genome-wide regulatory interaction loops between NRs and P450s as well as to assign, at least partially, functions of individual NRs and P450s in the life history of fruit fly. Given the evolutionary conservations of homologous NRs and P450s between vertebrates and invertebrates, the results obtained in this project are expected to provide insights into the reciprocal regulatory interactions between NRs and P450s in other animals including humans as well as to provide great insights into new avenue for human NR ligand identification and NR-related drug design. The third focus of his research is to investigate the molecular mechanisms of Bt and conventional insecticide resistance, which is a major threat in current IPM system. In collaboration with Dr. Bruce Tabashnik, Timothy Dennehy, and Yves Carriere in our Department, Dr. Li is going to compare Bt toxin binding affinity and other defects of natural (s, r1, r2, r3) and artificial mutant PBW (Pink Bollworm) cadherin proteins and thus define the key functional domains of PBW cadherin.

Publications

Zhongyuan, Z., Zhang, S., Gu, S., Ni, X., Zeng, W., & Li, X. (2018). Useful Bicistronic Reporter System for Studying Poly(A) Site-Defining cis Elements and Regulation of Alternative Polyadenylation.. International Journal of Molecular Science, 19(1). doi:doi:10.3390/ijms19010279
Wang, J., Yanqing, L. i., Han, Z., Zhu, Y., Xie, Z., Wang, J., Liu, Y., & Xianchun, L. i. (2012). Molecular characterization of a ryanodine receptor gene in the rice leaffolder, cnaphalocrocis medinalis (Guenée). PLoS ONE, 7(5).

PMID: 22567170;PMCID: PMC3342285;Abstract:

Ryanodine receptors (RyRs) are the targets of two novel classes of synthetic insecticidal chemicals, phthalic acid diamides and anthranilic diamides. Isolation of full-length RyR cDNAs is a critical step towards the structural and functional characterization of insect RyRs and an understanding of the molecular mechanisms underlying the species selective toxicity of diamide insecticides. However, there has been little research on the insect RyR genes due to the high molecular weight of the RyR proteins. In this study, we isolated a full-length RyR cDNA (named as CmRyR) from Cnaphalocrocis medinalis, an important rice pest throughout Southeast Asia. The composite CmRyR gene contains an ORF of 15264 bp encoding a protein of 5087 amino acid residues, which shares 79% overall identity with its Drosophila melanogaster homologue. All hallmarks of the RyR proteins are conserved in the CmRyR protein, suggesting that CmRyR is a structural and functional analogue of known RyRs. A multiple sequence alignment illustrates that the insect RyRs share high levels of amino acid sequence identity at the the COOH-terminal region. However, the amino acid residues analogous to the CmRyR residues N4922, N4924, N4935, L4950, L4981, N5013 and T5064 are unique to lepidopteran RyRs compared with non-lepidopteran insect RyRs. This finding suggests that these residues may be involved in the differences in channel properties between lepidopteran and non-lepidopteran insect RyRs and in the species selective toxicity of diamide insecticides. Furthermore, two alternative splicing sites were identified in the CmRyR gene, one of which was located in the central part of the predicted second SPRY domain. Diagnostic PCR showed that the inclusion frequencies of two mutually exclusive exons (a/b) and one optional exon (c) differed between developmental stages or adult anatomical regions. Our results imply that alternative splicing may be a major means of generating functional diversity in C. medinalis RyR channel. © 2012 Wang et al.

Fabrick, J. A., Mathew, L. G., Tabashnik, B. E., & Li, X. (2011). Insertion of an intact CR1 retrotransposon in a cadherin gene linked with Bt resistance in the pink bollworm, Pectinophora gossypiella. Insect Molecular Biology, 20(5), 651-665.

PMID: 21815956;Abstract:

Three mutations in the Pectinophora gossypiella cadherin gene PgCad1 are linked with resistance to Bacillus thuringiensis (Bt) toxin Cry1Ac. Here we show that the r3 mutation entails recent insertion into PgCad1 of an active chicken repeat (CR1) retrotransposon, designated CR1-1-Pg. Unlike most other CR1 elements, CR1-1-Pg is intact, transcribed by a flanking promoter, contains target site duplications and has a relatively low number of copies. Examination of transcripts from the PgCad1 locus revealed that CR1-1-Pg disrupts both the cadherin protein and a long noncoding RNA of unknown function. Together with previously reported data, these findings show that transposable elements disrupt eight of 12 cadherin alleles linked with resistance to Cry1Ac in three lepidopteran species, indicating that the cadherin locus is a common target for disruption by transposable elements. © Published 2011. This article is a U.S. Government work and is in the public domain in the U.S.A.

Li, X. (2013). Differential effects of an exotic plant virus on its two closely related vectors. SCIENTIFIC REPORTS, 3.

Concurrent spread of Tomato yellow leaf curl virus (TYLCV) with invasion of Bemisia tabaci Q rather than B in China suggests a more mutualistic relationship between TYLCV and Q than B. To assess this hypothesis, we quantified the impacts of TYLCV on the performance and competitiveness of B and Q in the laboratory. The results showed that relative to their non-infected counterparts feeding on cotton (a non-host for TYLCV), infected B exhibited significant reductions in life-history traits, whereas infected Q only showed marginal reductions. While Q performed better on TYLCV-infected tomato plants than on uninfected ones, the reverse was observed in B. Q displacement by B took one more generation on TYLCV-infected tomato plants than on healthy ones. These results demonstrate that TYLCV was indirectly mutualistic to Q but directly and indirectly parasitic to B.

Xinzhi, N. i., Chen, Y., Hibbard, B. E., Wilson, J. P., Williams, W. P., Buntin, G. D., Ruberson, J. R., & Xianchun, L. i. (2011). Foliar resistance to fall armyworm in corn germplasm lines that confer resistance to root- and ear-feeding insects. Florida Entomologist, 94(4), 971-981.

Abstract:

A holistic approach to developing new corn germplasm that confers multiple insect resistance in various plant tissues at different growth stages was examined. Eight corn germplasm lines were examined for their foliar resistance to fall armyworm [Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)] and natural enemy attraction at V6V8 (or 68 leaf) stages in 2008 and 2009. Four corn germplasm lines with known levels of resistance to root- and ear-feeding insects ['CRW3(S1)C6', 'B37*H84', 'SIM6' and 'EPM6'], and four germplasm entries with different levels of S. frugiperda resistance ('Mp708', 'Ab24E', 'FAW7061' and 'FAW7111') were evaluated in the study. All plants were manually infested with 1520 neonate S. frugiperda larvae per plant, and injury was rated 7 and 14 d after infestation. Based on cluster analysis of S. frugiperda injury rating and predator survey data, 'Mp708' and 'FAW7061' were the most resistant, whereas 'Ab24E' and 'EPM6' were the most susceptible to fall armyworm feeding. The western corn rootworm-resistant 'CRW3(S1)C6' showed resistance to S. frugiperda feeding. Surveys for the diversity and abundance of predators of S. frugiperda in each experimental plot were also conducted 7 d after infestation. 'CRW3(S1)C6' and 'Ab24E' had the highest and lowest predator abundance, respectively. However, there was no direct correlation between S. frugiperda injury ratings and predator abundance. The current study demonstrated the feasibility of developing foliage-, root-, and ear-feeding insect-resistant germplasm covering multiple corn growth stages. In addition, the possibility of utilizing plant volatiles to attract predators, and reduce pest populations and crop damage is discussed.