Thomas P Davis

Thomas P Davis

Professor, Pharmacology
Professor, Pharmacology and Toxicology
Professor, Neuroscience - GIDP
Professor, Physiological Sciences - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(951) 858-5720

Research Interest

Thomas Davis, PhD, and his lab continue its long-term CNS biodistribution research program, funded by NIH since 1981, by studying the mechanisms involved in delivering drugs across the blood-brain barrier to the C.N.S. during pathological disease states. Recently, Dr. Davis and his lab discovered specifica drug transporters which can be targeted to enhance delivery. They are also interested in studying the effect of hypoxia/aglycemia/inflammatory pain on endothelial cell permeability and structure at the blood-brain barrier. Dr. Davis has recently shown that short-term hypoxia/aglycemia leads to significant alterations in permeability which can be reversed by specific calcium channel antagonists. This work has significant consequences to the study of stroke. Additionally, he has discovered that peripheral pain has significant effects on BBB tight junction protein cytoarchitecture leading to variations in the delivery of analgesics to the CNS.

Publications

Davis, T., Egleton, R. D., Campos, C. C., Huber, J. D., Brown, R. C., & Davis, T. P. (2003). Differential effects of diabetes on rat choroid plexus ion transporter expression. Diabetes, 52(6).

Though diabetes is a disease with vascular complications, little is known about its effects on the blood-brain barrier or the blood-cerebrospinal fluid barrier (BCSFB). The BCSFB is situated at choroid plexuses located in the lateral, third, and fourth ventricles. Choroid plexuses are the primary site of cerebrospinal fluid (CSF) production and express numerous ion transporters. Previous studies have shown a perturbation of ion transport in the periphery and brain during diabetes. In this study, we investigated the effect of diabetes on ion transporters in the choroid plexuses of streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in male Sprague-Dawley rats by intraperitoneal injection of STZ (60 mg/kg in citrate buffer, confirmed by glucose analysis: 601 +/- 22 mg/dl diabetic rats, 181 +/- 46 mg/dl age-matched controls); and at 28 days, rats were killed, choroid plexuses harvested, and protein extracted. Western blot analyses were carried out using antibodies for ion transporters, including Na(+)-K(+)-2Cl(-) cotransporter and the Na(+)-K(+)-ATPase alpha1-subunit. The efflux of the K(+) analog (86)Rb(+) from choroid plexus was also studied. Diabetic rats showed an increase in expression of the Na(+)-K(+)-2Cl(-) cotransporter and the Na(+)-K(+)-ATPase alpha1-subunit, as compared with age-matched controls, a decrease in Na(+)-H(+) exchanger expression, and no change in Na(+)-K(+)-ATPase beta1- or beta2-subunit. The net effect of these changes was a 66% increase in (86)Rb(+) efflux from diabetic choroid plexus compared with controls. These changes in expression may affect choroid plexus ion balance and thus significantly affect CSF production in diabetic rats.

Davis, T., Lochhead, J. J., McCaffrey, G., Quigley, C. E., Finch, J., DeMarco, K. M., Nametz, N., & Davis, T. P. (2010). Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 30(9).

The blood-brain barrier (BBB) has a critical role in central nervous system homeostasis. Intercellular tight junction (TJ) protein complexes of the brain microvasculature limit paracellular diffusion of substances from the blood into the brain. Hypoxia and reoxygenation (HR) is a central component to numerous disease states and pathologic conditions. We have previously shown that HR can influence the permeability of the BBB as well as the critical TJ protein occludin. During HR, free radicals are produced, which may lead to oxidative stress. Using the free radical scavenger tempol (200 mg/kg, intraperitoneal), we show that oxidative stress produced during HR (6% O(2) for 1 h, followed by room air for 20 min) mediates an increase in BBB permeability in vivo using in situ brain perfusion. We also show that these changes are associated with alterations in the structure and localization of occludin. Our data indicate that oxidative stress is associated with movement of occludin away from the TJ. Furthermore, subcellular fractionation of cerebral microvessels reveals alterations in occludin oligomeric assemblies in TJ associated with plasma membrane lipid rafts. Our data suggest that pharmacological inhibition of disease states with an HR component may help preserve BBB functional integrity.

Davis, T., Ronaldson, P. T., Finch, J. D., Demarco, K. M., Quigley, C. E., & Davis, T. P. (2011). Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier. The Journal of pharmacology and experimental therapeutics, 336(3).

Pain is a dominant symptom associated with inflammatory conditions. Pharmacotherapy with opioids may be limited by poor blood-brain barrier (BBB) permeability. One approach that may improve central nervous system (CNS) delivery is to target endogenous BBB transporters such as organic anion-transporting polypeptide 1a4 (Oatp1a4). It is critical to identify and characterize biological mechanisms that enable peripheral pain/inflammation to "transmit" upstream signals and alter CNS drug transport processes. Our goal was to investigate, in vivo, BBB functional expression of Oatp1a4 in animals subjected to peripheral inflammatory pain. Inflammatory pain was induced in female Sprague-Dawley rats (200-250 g) by subcutaneous injection of 3% λ-carrageenan into the right hind paw; control animals were injected with 0.9% saline. In rat brain microvessels, Oatp1a4 expression was increased during acute pain/inflammation. Uptake of taurocholate and [d-penicillamine(2,5)]-enkephalin, two established Oatp substrates, was increased in animals subjected to peripheral pain, suggesting increased Oatp1a4-mediated transport. Inhibition of inflammatory pain with the anti-inflammatory drug diclofenac attenuated these changes in Oatp1a4 functional expression, suggesting that inflammation in the periphery can modulate BBB transporters. In addition, diclofenac prevented changes in the peripheral signaling cytokine transforming growth factor-β1 (TGF-β1) levels and brain microvascular TGF-β receptor expression induced by inflammatory pain. Pretreatment with the pharmacological TGF-β receptor inhibitor 4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide (SB431542) increased Oatp1a4 functional expression in λ-carrageenan-treated animals and saline controls, suggesting that TGF-β signaling is involved in Oatp1a4 regulation at the BBB. Our findings indicate that BBB transporters (i.e., Oatp1a4) can be targeted during drug development to improve CNS delivery of highly promising therapeutics.

Davis, T. P., Schaefer, C., & Tome, M. (2017). The opioid epidemic: A central role for the Blood Brain Barrier in opioid analgesia and abuse.. Fluids and Barriers of the CNS, 14(32), 1-11. doi:10.1186/s12987-017-0080-3
Abdullahi, W., Brzica, H., Ibbotson, K., Davis, T. P., & Ronaldson, P. T. (2017). Bone morphogenetic protein-9 increases the functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier via the activin receptor-like kinase-1 receptor. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 37(7), 2340-2345.

Targeting uptake transporters such as organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier (BBB) can facilitate central nervous system (CNS) drug delivery. Effective blood-to-brain drug transport via this strategy requires characterization of mechanisms that modulate BBB transporter expression and/or activity. Here, we show that activation of activin receptor-like kinase (ALK)-1 using bone morphogenetic protein (BMP)-9 increases Oatp1a4 protein expression in rat brain microvessels in vivo. These data indicate that targeting ALK1 signaling with BMP-9 modulates BBB Oatp1a4 expression, presenting a unique opportunity to optimize drug delivery and improve pharmacotherapy for CNS diseases.