Dominic V Mcgrath

Dominic V Mcgrath

Professor, Chemistry and Biochemistry-Sci
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-4690

Research Interest

Dominic Mcgrath, PhD, set forth a program which involves the use of organic synthesis for the design, development, and application of new concepts in macromolecular, supramolecular, and materials chemistry. Research efforts span a number of areas in the chemical sciences and include studies of: 1) chiral dendritic macromolecules and the effect of chiral subunits on dendrimer conformation, 2) photochromic dendrimers and linear polymers which undergo structural changes in response to visible light, 3) liquid crystalline materials based on dendritic and photochromic mesogens, and 4) synthesis of new ligands based on saturated nitrogen heterocycles.A continuing interest remains in the effect of structural perturbations on the properties and functional of dendritic macromolecules. Part of this research addresses the design, synthesis, and study of dendrimeric materials containing chiral moieties in the interior for influencing the conformational order of these 3-dimensional macromolecules. An ultimate goal is to develop materials active for the selective clathration of small guest molecules. Potential applications include chemical separations, sensor technology, environmental remediation, and asymmetric catalysis.Dr. Mcgrath and his lab team recently developed several new classes of dendritic materials containing photochromic subunits. As nature uses light energy to alter function in photoresponsive systems such as photosynthesis, vision, phototropism, and phototaxis, they use light energy to drive gross topological or constitutional changes in fundamentally new dendritic architectures with precisely placed photoresponsive subunits. In short, they can drive dendrimer properties with light stimuli. Two entirely new classes of photoresponsive dendritic macromolecules have been developed and include: 1) photochromic dendrimers and 2) photolabile dendrimers. Dr. Mcgrath anticipates that switchable and degradable dendrimers of this type will have application in small molecule transport systems based on their ability to reversibly encapsulate guest molecules. He continues to develop these materials as potential transport hosts and photoresponsive supramolecular assemblies.

Publications

Sidorenko, A., Houphouet-Boigny, C., Greco, A. C., Villavicencio, O., Hashemzadeh, M., McGrath, D. V., & Tsukruk, V. V. (2000). Langmuir monolayers from azobenzene-containing dendrons. American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, 41(2), 1487-1488.

Abstract:

Monolayer films were fabricated from photochromic monodendrons with amphiphilic character. Amphiphilicity was established by a hydrophilic focal point (crown-ether) and hydrophilic tails (alkyl chains) that flank a photochromic azobenzene moiety. The monolayer forming properties of four generations of dendrons along with both stearic acid and a reference azobenzene compound with a carboxylic acid focal point group were determined.

Roberts, J. M., Mayukh, M., Lichtenberger, D. L., Mcgrath, D. V., Mcgrath, D. V., Lichtenberger, D. L., Mayukh, M., & Roberts, J. M. (2018). Synthesis, Spectroscopic Studies, and Computational Analysis of a Solvatochromic Phthalocyanine Derivative. Chemical Communications.