Laurence Hurley

Laurence Hurley

Associate Director, BIO5 Institute
Professor, Medicinal Chemistry-Pharmaceutical Sciences
Professor, Medicinal Chemistry-Pharmacology and Toxicology
Professor, Cancer Biology - GIDP
Professor, BIO5 Institute
Primary Department
Department Affiliations
Contact
(520) 626-5622

Work Summary

Laurence Hurley's long-time research interest is in molecular targeting of DNA, first by covalent binders (CC-1065 and psorospermin), then as compounds that target protein–DNA complexes (pluramycins and Et 743), and most recently as four-stranded DNA structures (G-quadruplexes and i-motifs). He was the first to show that targeting G-quadruplexes could inhibit telomerase (Sun et al. [1997] J. Med. Chem., 40, 2113) and that targeting G-quadruplexes in promoter complexes results in inhibition of transcription (Siddiqui-Jain et al. [2002] Proc. Natl. Acad. Sci. U.S.A., 99, 11593).

Research Interest

Laurence Hurley, PhD, embraces an overall objective to design and develop novel antitumor agents that will extend the productive lives of patients who have cancer. His research program in medicinal chemistry depends upon a structure-based approach to drug design that is intertwined with a clinical oncology program in cancer therapeutics directed by Professor Daniel Von Hoff at TGen at the Mayo Clinic in Scottsdale. Dr. Hurley directs a research group that consists of a team of graduate and postdoctoral students with expertise in structural and synthetic chemistry working alongside students in biochemistry and molecular biology. NMR and in vivo evaluations of novel agents are carried out in collaboration with other research groups in the Arizona Cancer Center. At present, they have a number of different groups of compounds that target a variety of intracellular receptors. These receptors include: (1) transcriptional regulatory elements, (2) those involved in cell signaling pathways, and (3) protein-DNA complexes, including transcriptional factor-DNA complexes.In close collaboration with Dr. Gary Flynn in Medicinal Chemistry, he has an ongoing program to target a number of important kinases, including aurora kinases A and B, p38, and B-raf. These studies involve structure-based approaches as well as virtual screening. Molecular modeling and synthetic medicinal chemistry are important tools.The protein–DNA complexes involved in transcriptional activation of promoter complexes using secondary DNA structures are also targets for drug design.

Publications

Wheelhouse, R. T., Sun, D., Han, H., Han, F. X., & Hurley, L. H. (1998). Cationic porphyrins as telomerase inhibitors: The interaction of tetra- (N-methyl-4-pyridyl)porphine with quadruplex DNA [1]. Journal of the American Chemical Society, 120(13), 3261-3262.
Hurley, L., Rezler, E. M., Bearss, D. J., & Hurley, L. -. (2002). Telomeres and telomerases as drug targets. Current opinion in pharmacology, 2(4).

Recent advances in telomerase inhibition have been achieved by using antisense oligonucleotides and ribozymes to target the telomerase mRNA or the telomerase RNA template. Also, small molecules are potent catalytic inhibitors of telomerase. However, therapeutic regimes incorporating these agents will be challenging to implement in the clinic because of their delayed effectiveness. Drugs that directly bind to the telomeres and stabilize secondary DNA structures such as G-quadruplexes are also potent inhibitors of telomerase and disrupt telomere structure. These G-quadruplex-interactive drugs could feasibly be used in synergy with more conventional cytotoxic agents to bring about more immediate responses in cancer cells that are less dependent upon telomere length. Recently, an emerging possible novel use of G-quadruplex-interactive drugs employs their ability to target G-quadruplexes in promoter regions of genes (such as c-MYC), which then serves to repress the production of the human telomerase reverse transcriptase protein.

Hurley, L. H., & Petrusek, R. L. (1981). Rationalization of the biological consequences of DNA damage produced by anthramycin in repair proficient and deficient human cell lines. Journal of Supramolecular and Cellular Biochemistry, 15(Suppl.5), No. 511.
Thompson, A. S., Fan, J. -., Sun, D., Hansen, M., & Hurley, L. H. (1995). Determination of the structural role of the internal guanine-cytosine base pair in recognition of a seven-base-pair sequence cross-linked by Bizelesin. Biochemistry, 34(35), 11005-11016.

PMID: 7669758;Abstract:

Bizelesin (formerly U77,779, The Upjohn Co.) is a bifunctional DNA cross- linking antitumor antibiotic consisting of two open-ring homologs of the (+)- CC-1065 cyclopropa[c]pyrrolo[3,2-e]indol-4(5H)-one (CPI) subunits connected by a rigid linking moiety. Previous studies have shown that Bizelesin most often forms an interstrand cross-link through the N3 of two adenines 6 base pairs (bp) apart (inclusive of the modified adenines). However, gel electrophoresis studies have also indicated that Bizelesin forms 7-bp cross- links in specific sequences. In most of these sequences the cross-linked adenines represent the only possible cross-link site (i.e., no 6-bp site is available); however, in several sequences, a 7-bp sequence is selected in overwhelming preference to a possible 6-bp sequence. In this study, we demonstrate the unique requirement for a G·C base pair within this sequence and the critical presence of the exocyclic 2-amino group of guanine. In a subsequent two-dimensional 1H-NMR study that concentrates on the 7-bp cross- link formed with the sequence 5'-TTAGTTA-3', the role of the central G·C base pairs in the formation of a 7-bp cross-link is probed. 1H-NMR analysis coupled with restrained molecular dynamics (rMD) provides evidence for distortion around the covalently modified adenines. Because of this distortion, the modified bases are twisted toward the center of the duplex adduct, effectively reducing the cross-linked distance. The rMD study also indicates that a hydrogen bond is formed between the exocyclic amine of the central guanine and the carbonyl of the ureylene linker. On the basis of the observation of the distortion in the duplex and the hydrogen bonding between the drag and DNA, it is possible to speculate on the role of the central G·C bases in this sequence preference and propose a mechanism by which Bizelesin forms a 7-bp rather than a 6-bp cross-link with this sequence.

Sun, D., & Hurley, L. H. (1994). Cooperative bending of the 21-base-pair repeats of the SV40 viral early promoter by human Sp1. Biochemistry, 33(32), 9578-9587.

PMID: 8068633;Abstract:

The overall structural features of the multimeric complex between Sp1 and the 21-base-pair repeat of the early promoter region of SV40 DNA have been determined using hydroxyl-radical footprinting; (+)-CC-1065, a sequence-specific minor groove bending probe; and circularization experiments. The results show that the 21-base-pair repeat region has an intrinsically in-phase bent structure that is stabilized upon saturation Sp1 binding by protein-DNA and protein-protein interactions to produce a looping structure. The direction of the Sp1-stabilized bending of DNA occurs into the minor groove and is localized between each of the Sp1 binding sites. These results are used as the basis to propose a looping structure for the multimeric Sp1 21-base-pair repeat region of SV40 DNA. Last, these results provide a rationale for the recently observed inhibition of basal transcriptional levels by site-specific triple-helical DNA complexes. © 1994 American Chemical Society.